GOALI: Single droplet level understanding of phase inversion emulsification to enable continuous processing

GOALI:单液滴水平了解转相乳化以实现连续加工

基本信息

  • 批准号:
    1604536
  • 负责人:
  • 金额:
    $ 33.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

CBET - 1604536PI: Lee, DaeyeonEmulsions are composed of liquid drops that are suspended in an immiscible liquid, such as oil drops in water. The drops are the dispersed phase, and the immiscible liquid is the continuous phase. Emulsions are used in the manufacture of many products, including foodstuffs, nutrients, drugs, and pesticides. Phase inversion emulsification (PIE) is a process for generating a new emulsion by inverting the phases of an existing emulsion. PIE is especially useful when it is difficult to generate the desired emulsion by other methods. For example, Xerox uses PIE to manufacture latex particles, which are used to produce toners for printing and photocopying. This GOALI project, which is a collaborative effort between the University of Pennsylvania and Xerox, will explore a variation on PIE called flow-induced PIE. In flow-induced PIE, phase inversion takes place by flowing an existing emulsion through microchannels that contain abrupt variations in their cross-sections, such as constrictions or expansions. Under proper conditions, an emulsion of oil drops in water flowing through the channel is inverted into an emulsion of water drops in oil. Experiments will be designed to explore effects of channel geometry, flow rates, wettability of the channel surface, and composition of the liquid phases on the phase inversion process. The flow-induced PIE process will allow products to be manufactured in a continuous process with reduced energy consumption, higher efficiency, and reduced environmental impact. The project will provide opportunities for students at various academic levels to participate in research. Students from underrepresented groups will be encouraged to participate through several programs at Penn, including the Louis Stokes Alliance for Minority Participation.A series of experiments will be conducted to determine effects of initial emulsion morphology and chemistry as well as channel geometry on the mechanism and efficiency of flow-induced PIE. The effect of surface wettability of the channels on the phase inversion process will be determined. Hydrodynamic parameters such as shear and extensional deformation in the microchannels will also be examined. The use of a microfluidic platform will enable the formation of model emulsions with controlled properties and the direct observation of PIE during flow. Emulsion droplets with precisely controlled size, size distribution and interfacial chemistry will be used to understand effects of emulsion morphology and chemistry on flow-induced PIE. Alternative arrangements that can promote flow-induced PIE will also be explored, including flow through a microfluidic device containing pillar arrays, which serves as a model porous medium.
CBET - 1604536PI:Lee,Daeyeon 乳液由悬浮在不混溶液体中的液滴组成,例如水中的油滴。液滴是分散相,不混溶的液体是连续相。乳液用于制造许多产品,包括食品、营养品、药物和农药。转相乳化 (PIE) 是通过反转现有乳液的相来生成新乳液的过程。 当通过其他方法难以生成所需乳液时,PIE 特别有用。例如,施乐公司使用 PIE 来制造乳胶颗粒,用于生产打印和复印用的墨粉。 这个 GOALI 项目是宾夕法尼亚大学和 Xerox 之间的合作项目,将探索 PIE 的一种变体,称为流诱导 PIE。 在流动诱导 PIE 中,通过使现有乳液流过横截面突然变化(例如收缩或扩张)的微通道来发生相转化。在适当的条件下,流过通道的水中油滴乳液转化为油中水滴乳液。 将设计实验来探索通道几何形状、流速、通道表面的润湿性以及液相组成对相转化过程的影响。流动诱导的 PIE 工艺将使产品能够以连续工艺制造,从而降低能耗、提高效率并减少对环境的影响。 该项目将为不同学术水平的学生提供参与研究的机会。将鼓励来自代表性不足群体的学生参与宾夕法尼亚大学的多个项目,包括路易斯斯托克斯少数民族参与联盟。将进行一系列实验,以确定初始乳液形态和化学以及通道几何形状对机制和效率的影响流引起的PIE。 将确定通道表面润湿性对相转化过程的影响。 还将检查微通道中的剪切和拉伸变形等流体动力学参数。 微流体平台的使用将能够形成具有受控特性的模型乳液,并在流动过程中直接观察 PIE。具有精确控制尺寸、尺寸分布和界面化学的乳液液滴将用于了解乳液形态和化学对流动诱导 PIE 的影响。还将探索可以促进流动诱导 PIE 的替代布置,包括流经包含柱阵列的微流体装置,该微流体装置充当模型多孔介质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daeyeon Lee其他文献

Increase in the effective viscosity of polyethylene under extreme nanoconfinement.
在极端纳米约束下聚乙烯的有效粘度增加。
  • DOI:
    10.1063/5.0185144
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Ren;Zachary R Hinton;Renjing Huang;Thomas H. Epps;L. Korley;R. Gorte;Daeyeon Lee
  • 通讯作者:
    Daeyeon Lee
Synthesis and mechanical response of disordered colloidal micropillars.
无序胶体微柱的合成和机械响应。
  • DOI:
    10.1039/c3cp55422h
  • 发表时间:
    2014-05-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Strickland;Lei Zhang;Yun;D. Magagnosc;Daeyeon Lee;D. Gianola
  • 通讯作者:
    D. Gianola
Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics
具有可调润湿性和耐溶剂性的可模压全氟聚醚-聚乙二醇网络,用于液滴微流体的快速原型制作
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heon;Syung Hun Han;S. Yadavali;Junhyong Kim;D. Issadore;Daeyeon Lee
  • 通讯作者:
    Daeyeon Lee
Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model
基于重力的成骨因子模式以在大型动物模型骨软骨损伤后保留骨结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9
  • 作者:
    H. Zlotnick;R. Locke;S. Hemdev;B. Stoeckl;Sachin Gupta;A. Peredo;D. Steinberg;J. Carey;Daeyeon Lee;G. R. Dodge;R. Mauck
  • 通讯作者:
    R. Mauck
Ultrahigh Throughput On‐Chip Synthesis of Microgels with Tunable Mechanical Properties
具有可调机械性能的微凝胶的超高通量片上合成

Daeyeon Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daeyeon Lee', 18)}}的其他基金

Conference: 2024 Colloidal, Macromolecular and Polyelectrolyte Solutions Gordon Research Conference and Seminar
会议:2024胶体、高分子和聚电解质解决方案戈登研究会议及研讨会
  • 批准号:
    2331084
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions
NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变
  • 批准号:
    2110611
  • 财政年份:
    2021
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
  • 批准号:
    2132141
  • 财政年份:
    2021
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
Effect of Extreme Nanoconfinement on the Thermodynamics and Transport Phenomena in Multiphasic Nanocomposite Coatings
极端纳米约束对多相纳米复合涂层热力学和传输现象的影响
  • 批准号:
    1933704
  • 财政年份:
    2019
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
Nanostructured Composite Coatings to Harden and Toughen Polymer Surfaces
用于硬化和增韧聚合物表面的纳米结构复合涂层
  • 批准号:
    1662695
  • 财政年份:
    2017
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
Complexation of charged polymers and nanoparticles at all aqueous interfaces for functional membrane formation
带电聚合物和纳米颗粒在所有水界面处络合以形成功能性膜
  • 批准号:
    1705891
  • 财政年份:
    2017
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
SNM: Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment
SNM:用于水力压裂废水处理的纳米结构膜的可规模化制造
  • 批准号:
    1449337
  • 财政年份:
    2014
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
  • 批准号:
    1234993
  • 财政年份:
    2012
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
ACS Symposium on Emulsions, Bubbles and Foams: Fundamentals and Applications, New Orleans, Louisiana, April 7th - 11th, 2013
ACS 乳液、气泡和泡沫研讨会:基础知识和应用,路易斯安那州新奥尔良,2013 年 4 月 7 日至 11 日
  • 批准号:
    1219323
  • 财政年份:
    2012
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
CAREER: Understanding Electrostatic Interactions in Non-Polar Media for Generation of Nanostructured Thin Films
职业:了解非极性介质中的静电相互作用以生成纳米结构薄膜
  • 批准号:
    1055594
  • 财政年份:
    2011
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
  • 批准号:
    31900570
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
酵母RNase MRP的结构及催化机制研究
  • 批准号:
    31900929
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
  • 批准号:
    91753104
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
  • 批准号:
    31601181
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
  • 批准号:
    10670573
  • 财政年份:
    2023
  • 资助金额:
    $ 33.82万
  • 项目类别:
Droplet-based Spatially Encoded Live Cell Digital Extraction
基于液滴的空间编码活细胞数字提取
  • 批准号:
    10687620
  • 财政年份:
    2023
  • 资助金额:
    $ 33.82万
  • 项目类别:
A Uniquely Scalable Approach to Sequence Tens of Millions of Single Cells Without Compromising Performance
一种独特的可扩展方法,可在不影响性能的情况下对数千万个单细胞进行测序
  • 批准号:
    10700398
  • 财政年份:
    2023
  • 资助金额:
    $ 33.82万
  • 项目类别:
Understanding and targeting non-genetic mechanisms of drug resistance
了解和针对耐药性的非遗传机制
  • 批准号:
    10590490
  • 财政年份:
    2023
  • 资助金额:
    $ 33.82万
  • 项目类别:
Advanced Single Cell Technology Innovation Core
先进单细胞技术创新核心
  • 批准号:
    10729389
  • 财政年份:
    2023
  • 资助金额:
    $ 33.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了