NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions

NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变

基本信息

  • 批准号:
    2110611
  • 负责人:
  • 金额:
    $ 36.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Emulsions are made of droplets of one liquid suspended in another, immiscible, liquid such as oil droplets suspended in water. Liquid droplets adopt spherical shapes due to surface tension. It was recently discovered that, for over 60 different chemical combinations, the surface of droplets, which is covered with molecules called surfactants, can undergo freezing, which induces drastic changes in the shape of the droplets. This interfacial freezing (IF) phenomenon leads to the formation of faceted liquid droplets, thin platelets or rod/hair-like emulsion droplets. On one hand, these shape transformations may lead to major complications in industrial processes, such as pipe clogging by hair-like droplets. On the other hand, these shape transformations provide a powerful method of synthesizing particles with complex shapes for advanced applications. In numerous industrial and natural settings, the interfaces of emulsion droplets are covered by mixtures of surfantants and solid microparticles, known as colloids. However, the influence of surface-adsorbing colloids on the IF and droplet faceting phenomena has not been extensively investigated, although such colloids are present in many real-world emulsions. The proposed work aims to understand the effect of colloids on the shape transformation of emulsion droplets undergoing IF. Developing a deep understanding of the effect of particle size, concentration, shape and surface chemistry on the shape transformation of emulsions will enable strategies to prevent deleterious impacts of such phenomena in the food, oil and gas, pharmaceutical and cosmetic industries and lead to novel synthesis techniques to create new materials.The composition, structure and elasticity of the droplet interface play a crucial role in determining the stability, encapsulation capability and processability of emulsions in industry and in common chemical and biological systems. In many emulsions, the interfacial molecular layer can undergo a freezing transition, dramatically modifying the emulsion properties. This interfacial freezing (IF) transition drastically changes the shape of the emulsion droplets for sizes spanning 13 orders of magnitude in volume, and for over 60 different oil-surfactant combinations. Such shape transitions may lead to the formation of faceted liquid objects, high aspect ratio platelets or rod/hair-like emulsion droplets, changing the flow properties of the emulsions and potentially causing gelation leading to process complications. Engineering shape transformations of droplets also provides a powerful method of synthesizing highly shape-anisotropic particles with unique functionality. In numerous industrial and natural settings, the interfaces of the emulsions are decorated by mixtures of particles and surfactants, with the particles either added intentionally for emulsion stabilization, or being present as a contaminant. This project aims at understanding the interplay between the surface-adsorbed particles and the IF phenomena, with a particular focus on the effect of isotropic and Janus particles on the shape transformations. Using particle tracking and recently developed microfluidic methods, this project will investigate the effect of wetting properties, size, shape and interfacial concentration of particles on IF-driven shape transformations of droplets. While conventional isotropic colloids may be easily expelled from a droplet interface undergoing IF due to extremely low interfacial tension, Janus particles will strongly adsorb to such an interface due to their intrinsic surface activity, potentially enabling control over the shape transformation. New methods to control the IF-driven self-shaping of droplets will have a potentially transformative impact for oil and gas, pharmaceutical, food, agricultural and cosmetics industries, where emulsions are frequently exposed to surfactant- and particle-containing media. A new demonstration illustrating the interplay between the interfacial curvature and crystallization will be developed by undergraduate and graduate students for local high school teachers and students. To broaden participation of students from underrepresented groups, students with diverse backgrounds will be recruited by hosting students from the University of Puerto Rico-Humacao and by collaborating with Advancing Women in Engineering and Louise-Stoke Alliance for Minority Participation programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
乳液由悬浮在另一种不混溶液体中的一种液体的液滴制成,例如悬浮在水中的油滴。 由于表面张力,液滴呈球形。 最近发现,对于 60 多种不同的化学组合,覆盖有表面活性剂分子的液滴表面可能会发生冻结,从而导致液滴形状发生剧烈变化。这种界面冻结(IF)现象导致多面液滴、薄板或棒状/毛发状乳液液滴的形成。一方面,这些形状转变可能会导致工业过程中出现重大并发症,例如毛发状液滴堵塞管道。另一方面,这些形状变换为高级应用提供了合成复杂形状粒子的强大方法。在许多工业和自然环境中,乳液液滴的界面被表面活性剂和固体微粒的混合物(称为胶体)覆盖。然而,表面吸附胶体对 IF 和液滴分面现象的影响尚未得到广泛研究,尽管这种胶体存在于许多现实世界的乳液中。这项工作旨在了解胶体对 IF 过程中乳液液滴形状转变的影响。 深入了解粒径、浓度、形状和表面化学对乳液形状转变的影响,将有助于制定策略,防止此类现象对食品、石油和天然气、制药和化妆品行业产生有害影响,并带来新的合成方法液滴界面的组成、结构和弹性对于确定工业以及常见化学和生物系统中乳液的稳定性、封装能力和可加工性起着至关重要的作用。在许多乳液中,界面分子层可以经历冻结转变,从而显着改变乳液特性。这种界面冻结 (IF) 转变极大地改变了乳液液滴的形状,其体积尺寸跨越 13 个数量级,并且适用于 60 多种不同的油-表面活性剂组合。这种形状转变可能导致形成多面液体物体、高纵横比片状体或杆状/毛发状乳液液滴,改变乳液的流动特性并可能导致凝胶化,从而导致过程复杂化。液滴的工程形状变换还提供了一种合成具有独特功能的高度形状各向异性颗粒的强大方法。在许多工业和自然环境中,乳液的界面由颗粒和表面活性剂的混合物装饰,这些颗粒要么是为了乳液稳定而有意添加的,要么是作为污染物存在的。该项目旨在了解表面吸附粒子与 IF 现象之间的相互作用,特别关注各向同性粒子和 Janus 粒子对形状变换的影响。该项目将利用粒子跟踪和最近开发的微流体方法,研究粒子的润湿特性、尺寸、形状和界面浓度对中频驱动的液滴形状转变的影响。虽然由于极低的界面张力,传统的各向同性胶体可以很容易地从经历 IF 的液滴界面中排出,但 Janus 颗粒由于其固有的表面活性,将强烈吸附到这样的界面上,从而有可能实现对形状转变的控制。控制中频驱动的液滴自成形的新方法将对石油和天然气、制药、食品、农业和化妆品行业产生潜在的变革性影响,这些行业的乳液经常暴露于含有表面活性剂和颗粒的介质。本科生和研究生将为当地高中教师和学生开发一个新的演示,展示界面曲率和结晶之间的相互作用。为了扩大来自代表性不足群体的学生的参与,将通过接待来自波多黎各大学乌马考分校的学生,并与推进工程领域女性和路易斯-斯托克少数族裔参与计划联盟合作,招募具有不同背景的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets
自面乳液液滴中盐诱导的稳定性和改进的界面能量学
  • DOI:
    10.1016/j.jcis.2022.03.146
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Nanikashvili, Pilkhaz M.;Butenko, Alexander V.;Deutsch, Moshe;Lee, Daeyeon;Sloutskin, Eli
  • 通讯作者:
    Sloutskin, Eli
Modulation of Oil/Polymer Nanocapsule Size via Phase Diagram-Guided Microfluidic Coprecipitation
通过相图引导微流体共沉淀调节油/聚合物纳米胶囊尺寸
  • DOI:
    10.1021/acs.langmuir.3c00183
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Rosenfeld, Joseph;Ganachaud, Francois;Lee, Daeyeon
  • 通讯作者:
    Lee, Daeyeon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daeyeon Lee其他文献

Increase in the effective viscosity of polyethylene under extreme nanoconfinement.
在极端纳米约束下聚乙烯的有效粘度增加。
  • DOI:
    10.1063/5.0185144
  • 发表时间:
    2024-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Ren;Zachary R Hinton;Renjing Huang;Thomas H. Epps;L. Korley;R. Gorte;Daeyeon Lee
  • 通讯作者:
    Daeyeon Lee
Synthesis and mechanical response of disordered colloidal micropillars.
无序胶体微柱的合成和机械响应。
  • DOI:
    10.1039/c3cp55422h
  • 发表时间:
    2014-05-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Strickland;Lei Zhang;Yun;D. Magagnosc;Daeyeon Lee;D. Gianola
  • 通讯作者:
    D. Gianola
Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics
具有可调润湿性和耐溶剂性的可模压全氟聚醚-聚乙二醇网络,用于液滴微流体的快速原型制作
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heon;Syung Hun Han;S. Yadavali;Junhyong Kim;D. Issadore;Daeyeon Lee
  • 通讯作者:
    Daeyeon Lee
Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model
基于重力的成骨因子模式以在大型动物模型骨软骨损伤后保留骨结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9
  • 作者:
    H. Zlotnick;R. Locke;S. Hemdev;B. Stoeckl;Sachin Gupta;A. Peredo;D. Steinberg;J. Carey;Daeyeon Lee;G. R. Dodge;R. Mauck
  • 通讯作者:
    R. Mauck
Ultrahigh Throughput On‐Chip Synthesis of Microgels with Tunable Mechanical Properties
具有可调机械性能的微凝胶的超高通量片上合成

Daeyeon Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daeyeon Lee', 18)}}的其他基金

Conference: 2024 Colloidal, Macromolecular and Polyelectrolyte Solutions Gordon Research Conference and Seminar
会议:2024胶体、高分子和聚电解质解决方案戈登研究会议及研讨会
  • 批准号:
    2331084
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
  • 批准号:
    2132141
  • 财政年份:
    2021
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
Effect of Extreme Nanoconfinement on the Thermodynamics and Transport Phenomena in Multiphasic Nanocomposite Coatings
极端纳米约束对多相纳米复合涂层热力学和传输现象的影响
  • 批准号:
    1933704
  • 财政年份:
    2019
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
Complexation of charged polymers and nanoparticles at all aqueous interfaces for functional membrane formation
带电聚合物和纳米颗粒在所有水界面处络合以形成功能性膜
  • 批准号:
    1705891
  • 财政年份:
    2017
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
Nanostructured Composite Coatings to Harden and Toughen Polymer Surfaces
用于硬化和增韧聚合物表面的纳米结构复合涂层
  • 批准号:
    1662695
  • 财政年份:
    2017
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
GOALI: Single droplet level understanding of phase inversion emulsification to enable continuous processing
GOALI:单液滴水平了解转相乳化以实现连续加工
  • 批准号:
    1604536
  • 财政年份:
    2016
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
SNM: Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment
SNM:用于水力压裂废水处理的纳米结构膜的可规模化制造
  • 批准号:
    1449337
  • 财政年份:
    2014
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
  • 批准号:
    1234993
  • 财政年份:
    2012
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
ACS Symposium on Emulsions, Bubbles and Foams: Fundamentals and Applications, New Orleans, Louisiana, April 7th - 11th, 2013
ACS 乳液、气泡和泡沫研讨会:基础知识和应用,路易斯安那州新奥尔良,2013 年 4 月 7 日至 11 日
  • 批准号:
    1219323
  • 财政年份:
    2012
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
CAREER: Understanding Electrostatic Interactions in Non-Polar Media for Generation of Nanostructured Thin Films
职业:了解非极性介质中的静电相互作用以生成纳米结构薄膜
  • 批准号:
    1055594
  • 财政年份:
    2011
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
NSF-BSF: NeTS: Small: Making BGP work for real-time interactive applications
NSF-BSF:NeTS:小型:使 BGP 适用于实时交互式应用程序
  • 批准号:
    2344761
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 36.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了