Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments

合作研究:通过体内和离体综合力学实验研究人脑的极限力学

基本信息

  • 批准号:
    2331295
  • 负责人:
  • 金额:
    $ 27.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

The human brain exhibits complex mechanical behavior. Its deformation under external forces depends on the extent and speed of loading. Rapid deformation of the brain during events such as blasts and automotive crashes can cause traumatic brain injury. Understanding the mechanical behavior of the human brain under such extreme conditions is critical to developing computer models for predicting brain injury. This knowledge is also needed to design safer personal protective equipment and brain injury management and prevention strategies. Unfortunately, the current understanding of the mechanical behavior of living humans' brains is restricted to small deformations and a narrow range of loading rates that do not represent the full spectrum of injury-causing conditions. This award supports fundamental research combining high-rate mechanical testing, analytical and computational modeling, and machine learning to generate insights into how the living human brain responds to large and rapid loading. Results from this research will positively impact U.S. national health and welfare and will contribute to the fields of tissue mechanics, traumatic brain injury, and machine learning. This project will lead to new courses and involve contributions from underrepresented minorities.The overarching goal of this research is to understand the high strain rate mechanics of the brain in its native biophysical environment. The first stage will focus on tissue responses under small deformations and dynamic strain rates. Wide-band Magnetic Resonance Elastography experiments will be conducted on brain tissue specimens from multiple brain regions to develop linear viscoelastic constitutive models. Multi-fidelity models will be developed to fuse the observed responses with available narrow-band in vivo brain tissue responses for predicting linear viscoelastic properties of the in vivo brain tissue in a wide range of loading frequencies. The second stage will focus on tissue responses under large deformations and extreme strain rates. Quasi-static and dynamic mechanical testing will be conducted to develop visco-hyperelastic constitutive models. Physics-informed multi-fidelity models will be developed to fuse the ex vivo visco-hyperelastic responses with the in vivo linear viscoelastic responses characterized in the previous stage. This study will significantly advance our understanding of brain biomechanics by generating insights into the relationship between in vivo and ex vivo tissue mechanics and the first-ever full-field maps of the living brain’s mechanical properties applicable under extreme loading conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人脑在外力作用下表现出复杂的机械行为,这取决于爆炸和汽车碰撞等事件中大脑的快速变形,了解人脑在外力作用下的机械行为。这种极端条件对于开发预测脑损伤的计算机模型至关重要,也需要这些知识来设计更安全的个人防护设备以及脑损伤管理和预防策略。不幸的是,目前对活人大脑机械行为的理解仅限于。小变形和窄该奖项支持将高速机械测试、分析和计算建模以及机器学习相结合的基础研究,以深入了解活人大脑如何应对大的和造成伤害的情况。这项研究的结果将对美国国民健康和福利产生积极影响,并将为组织力学、创伤性脑损伤和机器学习领域做出贡献。该项目将带来新课程,并涉及代表性不足的少数群体的贡献。这项研究的目的是为了了解第一阶段将重点研究小变形下的组织反应和动态应变率,将对来自多个大脑区域的脑组织样本进行宽带磁共振弹性成像实验。将开发多保真度模型,将观察到的响应与可用的窄带体内脑组织响应相融合,以预测体内脑组织在各种加载频率下的线性粘弹性特性。将重点关注大变形和极端应变率下的组织响应,以开发粘性超弹本构模型,以将离体粘性超弹响应与融合。这项研究将通过深入了解体内和离体组织力学之间的关系以及有史以来第一个全场图来显着增进我们对前一阶段特征的体内线性粘弹性响应的理解。活体大脑在极端负载条件下的机械特性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Shields其他文献

a systematic
一个系统的
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Buelo;S. McLean;Steven Julious;J. Flores;A. Bush;J. Henderson;J. Paton;Aziz Sheikh;Michael Shields;Hilary Pinnock
  • 通讯作者:
    Hilary Pinnock
Asthma deaths: we need to identify risk factors early and construct at-risk asthma registers.
哮喘死亡:我们需要及早识别危险因素并建立高危哮喘登记册。
The Effect of Human β2-Microglobulin on Major Histocompatibility Complex I Peptide Loading and the Engineering of a High Affinity Variant
人 β2-微球蛋白对主要组织相容性复合物 I 肽加载的影响和高亲和力变体的工程
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Michael Shields;R. Kubota;W. Hodgson;S. Jacobson;W. Biddison;R. Ribaudo
  • 通讯作者:
    R. Ribaudo
Quantifying the Structure of Disordered Materials
量化无序材料的结构
  • DOI:
  • 发表时间:
    2022-11-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Hardin;M. Ch;ross;ross;Rahul Meena;Spencer Fajardo;Dimitris G. Giovanis;I. Kevrekidis;M. Falk;Michael Shields
  • 通讯作者:
    Michael Shields
Fast and Frugal Models of Clinical Judgment in Novice and Expert Physicians
新手和专家医生快速、节俭的临床判断模型
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    F. Kee;J. Jenkins;Seana McIlwaine;C. Patterson;S. Harper;Michael Shields
  • 通讯作者:
    Michael Shields

Michael Shields的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Shields', 18)}}的其他基金

Collaborative Research: Wind Tunnel Modeling of Higher-Order Turbulence and its Effects on Structural Loads and Response
合作研究:高阶湍流的风洞建模及其对结构载荷和响应的影响
  • 批准号:
    1930389
  • 财政年份:
    2019
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
Workshop: Uncertainty Quantification in Computational Solid and Structural Materials Modeling; Baltimore, Maryland; January 17-18, 2019
研讨会:计算实体和结构材料建模中的不确定性量化;
  • 批准号:
    1901684
  • 财政年份:
    2018
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
CAREER: Higher-Order Methods for Nonlinear Stochastic Structural Dynamics
职业:非线性随机结构动力学的高阶方法
  • 批准号:
    1652044
  • 财政年份:
    2017
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
GOALI: Improving the Reliability of Aluminum Structures During Fire Through Computational Modeling
目标:通过计算建模提高火灾期间铝结构的可靠性
  • 批准号:
    1400387
  • 财政年份:
    2014
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant

相似国自然基金

极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极端气候变化对阿尔泰山西伯利亚落叶松衰退影响机制及死亡风险研究
  • 批准号:
    42377449
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
极端光场条件下正电子束的产生、加速和操控研究
  • 批准号:
    12375244
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
极端团队的工作特征与团队韧性研究:基于认知与情绪的双通路机制
  • 批准号:
    72302214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
驾驶人极端情绪下风险映射解析的自适应主动干预研究
  • 批准号:
    52302497
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337381
  • 财政年份:
    2024
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337380
  • 财政年份:
    2024
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 27.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了