Collaborative Research: Optimal Sensor Selection and Robust Traffic Detection and Estimation in a World of Connected Vehicles
协作研究:联网车辆世界中的最佳传感器选择以及稳健的交通检测和估计
基本信息
- 批准号:1917056
- 负责人:
- 金额:$ 23.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reliable traffic management strategies require accurate knowledge of traffic levels on roads. Though the emergence of connected vehicles (CV) offers tremendous potential for sharing traffic data about vehicles' locations and speeds through wireless communications, there are both privacy concerns and bandwidth constraints - not all users want to share and not all vehicles are able to share. This project will address both issues by designing methods to guide the selection of some road users for data sharing and analysis to provide accurate estimation of traffic levels in real time, while addressing privacy and bandwidth issues. Throughout this project, training modules in traffic and machine learning sciences will be designed at both UT San Antonio and UT Austin and students from underrepresented groups will be recruited at UTSA where 58 percent of enrolled students are minorities.The project will: (i) consider privacy of user data hence maintaining anonymity of vehicles and users, (ii) identify sudden changes in traffic conditions due to accidents, (iii) design a time-varying selection of traffic data collected in real-time from CVs, and (iv) quantify limits on the network bandwidth and uncertainty in traffic conditions and road properties. The project's major contribution lies in advancing the use of CVs as real-time, mobile traffic sensors. This involves the integration of concepts from multiple disciplines: traffic flow, networked systems, estimation, and machine learning theories. Specifically, the project will investigate computationally scalable methods that traffic operators can utilize to optimally sample data from CVs while satisfying privacy and bandwidth constraints, thereby monitoring traffic in real-time. The theoretical foundations will be validated with realistic traffic setups through collaborations with the cities of Austin and San Antonio. The broader impact of the research transcends traffic networks: the computational algorithms will be applicable to related problems involving networked systems of partial differential equations and moving sensing platforms such as environmental monitoring by robot and unmanned aerial vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可靠的交通管理策略需要准确了解道路上的交通水平。尽管联网车辆 (CV) 的出现为通过无线通信共享有关车辆位置和速度的交通数据提供了巨大潜力,但同时存在隐私问题和带宽限制 - 并非所有用户都愿意共享,也并非所有车辆都能够共享。该项目将通过设计方法来指导选择一些道路使用者进行数据共享和分析,以实时准确地估计交通水平,同时解决隐私和带宽问题,从而解决这两个问题。在整个项目中,交通和机器学习科学方面的培训模块将在 UT 圣安东尼奥分校和 UT 奥斯汀分校设计,并且 UTSA 将招募来自代表性不足群体的学生,其中 58% 的注册学生是少数族裔。该项目将: (i) 考虑用户数据的隐私,从而保持车辆和用户的匿名性,(ii) 识别由于事故导致的交通状况的突然变化,(iii) 设计从 CV 实时收集的交通数据的时变选择,以及 (iv)量化网络带宽的限制以及交通状况和道路特性的不确定性。该项目的主要贡献在于推动 CV 作为实时移动交通传感器的使用。这涉及多个学科概念的整合:交通流、网络系统、估计和机器学习理论。具体来说,该项目将研究计算可扩展的方法,交通运营商可以利用这些方法从 CV 中优化采样数据,同时满足隐私和带宽限制,从而实时监控交通。通过与奥斯汀和圣安东尼奥市的合作,理论基础将通过实际交通设置得到验证。该研究的更广泛影响超越了交通网络:计算算法将适用于涉及偏微分方程网络系统和移动传感平台的相关问题,例如机器人和无人机的环境监测。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variable Speed Limit and Ramp Metering Control of Highway Networks Using Lax-Hopf Method: A Mixed Integer Linear Programming Approach
使用 Lax-Hopf 方法的公路网变速限制和匝道计量控制:混合整数线性规划方法
- DOI:10.1109/tits.2021.3069971
- 发表时间:2021-08
- 期刊:
- 影响因子:8.5
- 作者:Vishnoi, Suyash C.;Claudel, Christian G.
- 通讯作者:Claudel, Christian G.
A Control-Theoretic Approach for Scalable and Robust Traffic Density Estimation Using Convex Optimization
使用凸优化进行可扩展且鲁棒的交通密度估计的控制理论方法
- DOI:10.1109/tits.2019.2953023
- 发表时间:2020-07
- 期刊:
- 影响因子:8.5
- 作者:Nugroho, Sebastian A.;Taha, Ahmad F.;Claudel, Christian G.
- 通讯作者:Claudel, Christian G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Claudel其他文献
SoPhAr: Solar Phased-Arrays to boost the range of electric, hydrogen and SAF airliners in a solar world
SoPhAr:太阳能相控阵可提高太阳能世界中电动、氢能和 SAF 客机的航程
- DOI:
10.48550/arxiv.2404.04779 - 发表时间:
2024-04-07 - 期刊:
- 影响因子:0
- 作者:
Christian Claudel - 通讯作者:
Christian Claudel
Inner Ensemble Networks: Average Ensemble as an Effective Regularizer
内部集成网络:平均集成作为有效的正则化器
- DOI:
- 发表时间:
2020-06-15 - 期刊:
- 影响因子:0
- 作者:
Abduallah A. Mohamed;Muhammed Mohaimin Sadiq;Ehab Albadawy;Mohamed Elhoseiny;Christian Claudel - 通讯作者:
Christian Claudel
Marine-cloud brightening: an alternative system 1
海洋云增亮:替代系统 1
- DOI:
10.1088/2515-7620/ad2f71 - 发表时间:
2024-03-02 - 期刊:
- 影响因子:2.9
- 作者:
Christian Claudel;Fabian Hoffmann;Younan Xia - 通讯作者:
Younan Xia
Christian Claudel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Claudel', 18)}}的其他基金
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
- 批准号:
1739964 - 财政年份:2018
- 资助金额:
$ 23.27万 - 项目类别:
Continuing Grant
Optimal Control of a Swarm of Unmanned Aerial Vehicles for Traffic Flow Monitoring in Post-disaster Conditions
灾后交通流量监测中无人机群的优化控制
- 批准号:
1636154 - 财政年份:2017
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
相似国自然基金
Camassa-Holm方程和短脉冲型方程的最佳适定性与爆破现象研究
- 批准号:12301298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于情境最佳化的模型预测控制方法研究
- 批准号:62303416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态内镜和可解释性AI的早期胃癌最佳诊疗决策模型研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于宇宙线"多信使-反常现象"观测结果开展最佳邻近源起源的研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
线性正则变换域致密气储层的地震信号最佳时频表征及预测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 23.27万 - 项目类别:
Standard Grant