Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
基本信息
- 批准号:1933102
- 负责人:
- 金额:$ 65.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aquatic ecosystems in the United States and around the globe are experiencing increasing variability due to human activities. Provisioning drinking water in the face of rapid change in environmental conditions motivates the need to develop forecasts of future water quality. Near-term water quality forecasts can guide management actions over day to week time scales to mitigate potential disruptions in drinking water and other essential freshwater ecosystem services. To maximize the utility of water quality forecasts for managers and decision-makers, the forecasts must be accessible in near-real time, reliable, and continuously updated with environmental sensor data. However, developing iterative, near-term ecological forecasts requires complex cyber-infrastructure that is widely distributed, from sensors and computers collecting information at freshwater lakes and reservoirs to cloud computing services where forecast models are executed. Consequently, significant software challenges still remain for environmental scientists to easily and effectively deploy forecasting workflows. This project will address this need by designing, implementing, and deploying open-source software — FLARE: Forecasting Lake And Reservoir Ecosystems — that will enable the creation of flexible, scalable, robust, and near-real time iterative ecological forecasts. This software will be tested and widely disseminated to water utilities, drinking water managers, and many other decision-makers. FLARE will greatly advance the capability of the ecological research community to perform near-real time aquatic forecasts.The FLARE forecasting system is novel in its architecture, as it integrates a software-defined virtual distributed infrastructure spanning resources from sensor gateway devices at the edge of the network to cloud computing and storage. FLARE will support the flexible deployment of software in close proximity to water quality sensors in lakes and reservoirs, and in cloud resources for end-to-end data acquisition and processing. FLARE interconnects its distributed resources through a virtual private network to ensure data integrity and privacy in communications, and supports a flexible model applicable across a variety of lakes and reservoirs. Reusing best-of-breed technologies, FLARE builds upon and integrates several contemporary, widely-used open-source software frameworks in a manner that lowers the barrier to the deployment and management of ecological forecasting workflows by ecologists. Importantly, this project’s development of scalable and open-source cyberinfrastructure tools and end-to-end workflows for creating iterative aquatic forecasts will provide a critical resource for advancing the ecological forecasting research community, as well as provide a template for forecasting in other ecosystems. This project will build on and expand an existing program for cross-disciplinary teaching tools and research exchanges of undergraduate and graduate students to provide training at the intersection of computer science, freshwater science, and ecosystem modeling. Ultimately, this project will develop scalable, robust, secure workflows that will advance the capacity, practice, and training opportunities for ecological forecasting worldwide. Results from this project can be found at http://flare-forecast.orgThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国和全球各地的水生生态系统正在经历人类活动引起的可变性。面对环境条件快速变化的饮用水促进了发展未来水质森林的需求。近期的水质预测可以指导管理行动,每天都有时间尺度,以减轻饮用水和其他必要的淡水生态系统服务的潜在中断。为了最大程度地利用经理和决策者的水质森林效用,必须在近乎真实的时间内访问森林,可靠,并通过环境传感器数据不断更新。但是,开发迭代的近期生态森林需要广泛分布的复杂网络基础结构,从收集淡水湖泊和储层信息的传感器和计算机到执行预测模型的云计算服务。因此,对于环境科学家来说,仍然存在重大的软件挑战,可以轻松有效地部署预测工作流程。该项目将通过设计,实施和部署开源软件(Flare:预测湖泊和水库生态系统)来满足这一需求,从而可以创建灵活,可扩展,稳定且近乎实现的时间迭代的生态预测。该软件将经过测试,并广泛传播到水电图,饮用水管理人员和许多其他决策者。耀斑将大大提高生态研究界进行近乎现实的水生森林的能力。耀斑预测系统在其体系结构中是新颖的,因为它集成了一个软件定义的虚拟分布式基础架构,从网络边缘的传感器网关设备到云计算和存储。 Flare将支持软件的灵活部署,即与湖泊和水库中的水质传感器以及云资源中的水质传感器紧密相关,以端到端的数据获取和处理。 Flare通过虚拟专用网络互连其分布式资源,以确保通信中的数据完整性和隐私,并支持适用于各种湖泊和储层的灵活模型。 Reusing best-of-breed technologies, FLARE builds upon and integrates several contemporary, wide-used open-source software frameworks in a manner that lowers the barrier Importantly, this project’s development of scalable and open-source cyberinfrastructure tools and end-to-end workflows for creating iterative aquatic forests will provide a critical resource for advancing the ecological forecasting research community, as well as provide a template for forecasting in other生态系统。该项目将在本科生和研究生的跨学科教学工具和研究交流的现有计划基础上进行,并在计算机科学,淡水科学和生态系统建模的交汇处提供培训。最终,该项目将开发可扩展,健壮,安全的工作流程,以促进全球生态预测的能力,实践和培训机会。该项目的结果可以在http://flare-forecast.orgt.orgthis Award上找到反映NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被视为通过评估而被视为珍贵的支持。
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting the effects of climate change on freshwater cyanobacterial blooms requires consideration of the complete cyanobacterial life cycle
- DOI:10.1093/plankt/fbaa059
- 发表时间:2021-01-01
- 期刊:
- 影响因子:2.1
- 作者:Cottingham, Kathryn L.;Weathers, Kathleen C.;Carey, Cayelan C.
- 通讯作者:Carey, Cayelan C.
Advancing lake and reservoir water quality management with near-term, iterative ecological forecasting
- DOI:10.1080/20442041.2020.1816421
- 发表时间:2021-01-14
- 期刊:
- 影响因子:3.1
- 作者:Carey, Cayelan C.;Woelmer, Whitney M.;Thomas, R. Quinn
- 通讯作者:Thomas, R. Quinn
Ecosystem-Scale Oxygen Manipulations Alter Terminal Electron Acceptor Pathways in a Eutrophic Reservoir
生态系统规模的氧气操纵改变富营养化水库中的末端电子受体途径
- DOI:10.1007/s10021-020-00582-9
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:McClure, Ryan P.;Schreiber, Madeline E.;Lofton, Mary E.;Chen, Shengyang;Krueger, Kathryn M.;Carey, Cayelan C.
- 通讯作者:Carey, Cayelan C.
Near‐term forecasts of NEON lakes reveal gradients of environmental predictability across the US
NEON 湖泊的近期预测揭示了美国各地环境可预测性的梯度
- DOI:10.1002/fee.2623
- 发表时间:2023
- 期刊:
- 影响因子:10.3
- 作者:Thomas, R Quinn;McClure, Ryan P;Moore, Tadhg N;Woelmer, Whitney M;Boettiger, Carl;Figueiredo, Renato J;Hensley, Robert T;Carey, Cayelan C
- 通讯作者:Carey, Cayelan C
Embedding communication concepts in forecasting training increases students' understanding of ecological uncertainty
在预测培训中嵌入沟通概念可以增加学生对生态不确定性的理解
- DOI:10.1002/ecs2.4628
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Woelmer, Whitney M.;Moore, Tadhg N.;Lofton, Mary E.;Thomas, R. Quinn;Carey, Cayelan C.
- 通讯作者:Carey, Cayelan C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renato Figueiredo其他文献
On the Performance and Cost of Cloud-Assisted Multi-Path Bulk Data Transfer
云辅助多路径批量数据传输的性能和成本
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
A Pipeline for Deep Learning with Specimen Images in iDigBio - Applying and Generalizing an Examination of Mercury Use in Preparing Herbarium Specimens
iDigBio 中标本图像深度学习的流程 - 应用和推广汞在制备植物标本室标本中的使用检查
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Matthew Collins;G. Yeole;P. Frandsen;Rebecca B. Dikow;Sylvia S. Orli;Renato Figueiredo - 通讯作者:
Renato Figueiredo
Extending PRAGMA-ENT for End Users using IPOP Overlay Networks
使用 IPOP 覆盖网络为最终用户扩展 PRAGMA-ENT
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
Investigating the Performance and Scalability of Kubernetes on Distributed Cluster of Resource-Constrained Edge Devices
研究 Kubernetes 在资源受限边缘设备分布式集群上的性能和可扩展性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vahid Daneshmand;Renato Figueiredo;Kohei Ichikawa;Keichi Takahashi;Kundjanasith Thonglek and Kensworth Subratie - 通讯作者:
Kundjanasith Thonglek and Kensworth Subratie
保育者は保育カンファレンスを行うことで何を学ぶのか?ー質的研究のメタ統合の試みからー
托儿工作者通过举办托儿会议学到了什么?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa;上田敏丈 - 通讯作者:
上田敏丈
Renato Figueiredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renato Figueiredo', 18)}}的其他基金
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: Elements: FaaSr: Enabling Cloud-native Event-driven Function-as-a-Service Computing Workflows in R
协作研究:要素:FaaSr:在 R 中启用云原生事件驱动的函数即服务计算工作流程
- 批准号:
2311123 - 财政年份:2023
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
I-Corps: Software-Defined Overlay Virtual Private Network for Edge Computing
I-Corps:用于边缘计算的软件定义的覆盖虚拟专用网络
- 批准号:
2134548 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
SaTC: CORE: Small: GOALI: Predicting and Labeling Email Phishing from Social Influence Cues and User Characteristics.
SaTC:核心:小:GOALI:根据社会影响线索和用户特征预测和标记电子邮件网络钓鱼。
- 批准号:
2028734 - 财政年份:2020
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure Virtual Networking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
- 批准号:
2004441 - 财政年份:2020
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: REVELARE: A Hardware-Supported Dynamic Information Flow Tracking Framework for IoT Security and Forensics
SaTC:核心:媒介:协作:REVELARE:用于物联网安全和取证的硬件支持的动态信息流跟踪框架
- 批准号:
1801599 - 财政年份:2018
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
SaTC: CORE: Small: FIRMA: Personalized Cross-Layer Continuous Authentication
SaTC:核心:小型:FIRMA:个性化跨层连续身份验证
- 批准号:
1814557 - 财政年份:2018
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
NeTS: Small: PerSoNet: Overlay Virtual Private Networks Spanning Personal Clouds and Social Peers
NetS:小型:PerSoNet:跨越个人云和社交对等的覆盖虚拟专用网络
- 批准号:
1527415 - 财政年份:2015
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Exploring Energy-Efficient GPGPUs Through Emerging Technology Integration
SHF:小型:协作研究:通过新兴技术集成探索节能 GPGPU
- 批准号:
1320100 - 财政年份:2013
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
SI2-SSE: Peer-to-Peer Overlay Virtual Network for Cloud Computing Research
SI2-SSE:用于云计算研究的点对点覆盖虚拟网络
- 批准号:
1339737 - 财政年份:2013
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
- 批准号:
2027241 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
- 批准号:
2027234 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: Incorporating Crystallography and Cryo-EM Tools in Foldit
合作研究:CIBR:在 Foldit 中结合晶体学和冷冻电镜工具
- 批准号:
2051305 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: Incorporating Crystallography and Cryo-EM tools into Foldit
合作研究:CIBR:将晶体学和冷冻电镜工具纳入 Foldit
- 批准号:
2051282 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: The OpenBehavior Project
合作研究:CIBR:开放行为项目
- 批准号:
1948181 - 财政年份:2021
- 资助金额:
$ 65.17万 - 项目类别:
Continuing Grant