SaTC: CORE: Small: FIRMA: Personalized Cross-Layer Continuous Authentication
SaTC:核心:小型:FIRMA:个性化跨层连续身份验证
基本信息
- 批准号:1814557
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important problem in computer security is verifying that people using computing devices are authorized to use them, not just when they first sign on to the device but during the whole time they are using them. Most existing continuous authentication schemes impose burdens on users, for instance, when systems quickly log users out and require frequent re-entry of passwords. This project will build and evaluate FIRMA, a user-transparent, continuous authentication software framework that collects usage data, targeted at corporate security contexts where such monitoring can be done. To the extent that people have unique but recurrent patterns of use -- itself an interesting research question -- FIRMA can estimate the likelihood that the current user is still an authorized, authenticated user based on how current use patterns compare to historical ones. Doing this might both reduce the burden of frequent re-authentication and provide early warning signs of malicious activity by malware or insider attacks. Further, by leveraging the unique way people use computers, FIRMA will be diverse by design -- adversaries will not be able to predict how specific individuals use their devices and their attacks will fail in many devices -- thereby "herd-protecting" security by making it difficult for malware to automatically spread across many devices. If successful, the project could have real impact on corporate security, reducing data breaches and downtime while improving the usability of these systems. The work will also have educational and training impacts through interdisciplinary collaboration and education between computer engineering and psychology, involvement of undergraduate researchers, and efforts to recruit female and minority students to participate in the project. FIRMA will be composed of a kernel module, which will continuously record at the operating system level all events related to user activities: user events (mouse clicks, keystrokes, and timestamps), processes, and the files and network events created as a consequence of user-driven activity. These events, recorded during a training period that represents a user's typical computer usage, will be applied to create a user profile using a novel Generative Adversarial Network (GAN)-based deep learning approach called AttenGAN/P-GAN, which will be composed of a user profile generator and a runtime classifier. AttenGAN/P-GAN will both provide new deep learning tools for processing sequences of unknown length as well as improved ability to train classifiers for anomaly detection without negative samples. The runtime classifier will continuously observe events generated by FIRMA's extractor, leverage the user profile to classify the current window of events being observed as normal or anomalous, and update the current user confidence score. This classifier will be resilient to benign profile changes caused by fluctuations in a user's activity pattern caused by external factors, such as travel (change of time zone) or change of groups or projects. FIRMA's evaluation will comprise four-week captures of natural computer usage data from recruited computer users. This evaluation will consider usability, classification accuracy, and false positives in the presence of various types of anomalies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机安全性的一个重要问题是验证使用使用计算设备的人员被授权使用它们,不仅是他们首次登录设备时,而且在整个过程中使用它们。 例如,大多数现有的连续身份验证方案会对用户施加负担,例如,当系统快速登录用户并需要频繁重新输入密码时。 该项目将构建和评估Firma,这是一个用户透明的,连续的身份验证软件框架,该框架收集使用数据,该框架针对的是可以进行此类监视的公司安全环境。 在人们具有独特但经常性的使用模式的范围内,这本身就是一个有趣的研究问题 - Firma可以根据当前的使用模式与历史模式相比,当前用户仍然是当前用户仍然是授权,经过认证的用户的可能性。 这样做可能会减轻频繁重新认证的负担,并通过恶意软件或内部攻击提供恶意活动的预警信号。 此外,通过利用人们使用计算机的独特方式,Firma将通过设计而多样化 - 对手将无法预测特定个人如何使用其设备和攻击在许多设备中会发生故障 - 从而使恶意软件难以自动散布在许多设备上。 如果成功,该项目可能会对公司安全产生真正的影响,减少数据泄露和停机时间,同时改善这些系统的可用性。 这项工作还将通过计算机工程和心理学之间的跨学科合作和教育,本科研究人员的参与以及招募女性和少数族裔学生参加该项目的努力,从而产生教育和培训的影响。 Firma将由内核模块组成,该模块将在操作系统级别连续记录所有与用户活动相关的事件:用户事件(鼠标点击,击键和时间戳),流程以及由于用户驱动的活动而创建的文件和网络事件。这些事件将在代表用户典型计算机使用情况的培训期间记录,将应用于使用新颖的生成对抗网络(GAN)的深度学习方法来创建用户配置文件,称为Attengan/P-GAN,该方法将由用户配置文件生成器和运行时分类器组成。 Attengan/p-gan都将提供新的深度学习工具,用于处理未知长度的序列,以及提高能力训练分类器以进行异常检测而没有负样本。运行时分类器将不断观察由Firma提取器生成的事件,利用用户配置文件将被观察到正常或异常的事件的当前窗口进行分类,并更新当前的用户置信度得分。该分类器将对由用户活动模式的波动引起的良性概况变化具有弹性,例如旅行(时区的变化)或组或项目的变化。 Firma的评估将包括招聘计算机用户的自然计算机使用数据的四个星期捕获。该评估将考虑在存在各种异常情况下的可用性,分类准确性和误报。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来提供支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Criterion of Reconstruction-based Anomaly Detection for Sparse-binary Data
- DOI:10.1109/globecom42002.2020.9322452
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Heng Qiao;D. Oliveira;Dapeng Oliver Wu
- 通讯作者:Heng Qiao;D. Oliveira;Dapeng Oliver Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renato Figueiredo其他文献
On the Performance and Cost of Cloud-Assisted Multi-Path Bulk Data Transfer
云辅助多路径批量数据传输的性能和成本
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
A Pipeline for Deep Learning with Specimen Images in iDigBio - Applying and Generalizing an Examination of Mercury Use in Preparing Herbarium Specimens
iDigBio 中标本图像深度学习的流程 - 应用和推广汞在制备植物标本室标本中的使用检查
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Matthew Collins;G. Yeole;P. Frandsen;Rebecca B. Dikow;Sylvia S. Orli;Renato Figueiredo - 通讯作者:
Renato Figueiredo
Extending PRAGMA-ENT for End Users using IPOP Overlay Networks
使用 IPOP 覆盖网络为最终用户扩展 PRAGMA-ENT
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa - 通讯作者:
Kohei Ichikawa
Investigating the Performance and Scalability of Kubernetes on Distributed Cluster of Resource-Constrained Edge Devices
研究 Kubernetes 在资源受限边缘设备分布式集群上的性能和可扩展性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vahid Daneshmand;Renato Figueiredo;Kohei Ichikawa;Keichi Takahashi;Kundjanasith Thonglek and Kensworth Subratie - 通讯作者:
Kundjanasith Thonglek and Kensworth Subratie
保育者は保育カンファレンスを行うことで何を学ぶのか?ー質的研究のメタ統合の試みからー
托儿工作者通过举办托儿会议学到了什么?
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa;上田敏丈 - 通讯作者:
上田敏丈
Renato Figueiredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renato Figueiredo', 18)}}的其他基金
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Elements: FaaSr: Enabling Cloud-native Event-driven Function-as-a-Service Computing Workflows in R
协作研究:要素:FaaSr:在 R 中启用云原生事件驱动的函数即服务计算工作流程
- 批准号:
2311123 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
I-Corps: Software-Defined Overlay Virtual Private Network for Edge Computing
I-Corps:用于边缘计算的软件定义的覆盖虚拟专用网络
- 批准号:
2134548 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Small: GOALI: Predicting and Labeling Email Phishing from Social Influence Cues and User Characteristics.
SaTC:核心:小:GOALI:根据社会影响线索和用户特征预测和标记电子邮件网络钓鱼。
- 批准号:
2028734 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure Virtual Networking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
- 批准号:
2004441 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
- 批准号:
1933102 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: REVELARE: A Hardware-Supported Dynamic Information Flow Tracking Framework for IoT Security and Forensics
SaTC:核心:媒介:协作:REVELARE:用于物联网安全和取证的硬件支持的动态信息流跟踪框架
- 批准号:
1801599 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: PerSoNet: Overlay Virtual Private Networks Spanning Personal Clouds and Social Peers
NetS:小型:PerSoNet:跨越个人云和社交对等的覆盖虚拟专用网络
- 批准号:
1527415 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Exploring Energy-Efficient GPGPUs Through Emerging Technology Integration
SHF:小型:协作研究:通过新兴技术集成探索节能 GPGPU
- 批准号:
1320100 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SI2-SSE: Peer-to-Peer Overlay Virtual Network for Cloud Computing Research
SI2-SSE:用于云计算研究的点对点覆盖虚拟网络
- 批准号:
1339737 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant