SHF: Small: Collaborative Research: Exploring Energy-Efficient GPGPUs Through Emerging Technology Integration

SHF:小型:协作研究:通过新兴技术集成探索节能 GPGPU

基本信息

  • 批准号:
    1320100
  • 负责人:
  • 金额:
    $ 24.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Nowadays, graphics processing units (GPUs) have been widely adopted for general-purpose computing, and are known as GPGPUs. However, current and future GPGPUs confront power and energy as the dominant constraints. The number of transistors integrated on a single GPU chip continues to increase due to shrinking feature size and the demand for massively parallel computing cores to increase throughput. On the other hand, the continuous decrease of transistor supply voltage at each new technology node has largely stalled because of leakage constraints, leading to an ever-increasing power density. Therefore, future GPGPUs must become more inherently energy efficient to avoid hitting the power wall. To meet the increasing demands on performance and energy-efficiency, emerging technologies such as non-volatile memory, inter-bank tunneling field effect transistors (TFETs), silicon nanophotonics, and three-dimensional (3D) integration are being deployed in hardware design and promise realization of power efficiency at a scale never expected before. The investigators are exploring a synergetic program to holistically and hierarchically improve the GPGPU's energy efficiency through emerging technology integration. The project objectives include (1) non-volatile memory in the GPU computing cores and low-power mechanisms to substantially reduce leakage and dynamic power consumption; (2) a hybrid TFET-CMOS (complementary metal-oxide semiconductor) methodology to effectively address the energy challenge at both intra- and inter-core levels; (3) a novel 3D-stacked throughput architecture based on silicon-nanophotonics technology to improve memory access performance yet reduce power consumption; (4) integration of the key research innovations and cross-technology optimizations to fully explore the potential of GPGPU design enabled by these emerging technologies. The proposed research will facilitate GPGPUs staying on track with deep sub-micron scaling and meeting the increasing demand for high-performance computing, and will hence benefit numerous real-life applications. This project will also contribute to society through engaging high-school and undergraduate students from minority-serving institutions in research, attracting women and other under-represented groups into graduate education, expanding the computer engineering curriculum with GPGPU power modeling and optimization techniques, disseminating research infrastructure for education and training, and collaborating with the GPU R&D industry.
如今,图形处理单元(GPU)已被广泛用于通用计算,被称为GPGPU。但是,当前和未来的GPGPU面临着权力和能量作为主要约束。由于特征大小的缩小以及对大量平行计算核心以增加吞吐量的需求,在单个GPU芯片上集成的晶体管数量继续增加。另一方面,由于泄漏的限制,每个新技术节点在每个新技术节点上的持续降低都大大停滞,从而导致功率密度不断增加。因此,未来的GPGPU必须变得更加固有地节能,以避免撞击电壁。为了满足对性能和能源效率的日益增长的需求,新兴技术(例如非挥发性记忆,银行间隧穿现场效应晶体管(TFET),硅纳米光子学和三维(3D)集成在硬件设计中已被部署在硬件设计中,并承诺在尺度上实现强力效率的实现。研究人员正在探索一项协同计划,以通过新兴技术整合从整体和分层提高GPGPU的能源效率。项目目标包括(1)GPU计算核心中的非易失性记忆和低功率机制,可大大降低泄漏和动态功耗; (2)一种混合TFET-CMO(互补的金属氧化物半导体)方法,可有效解决核内和核心间水平的能量挑战; (3)一种基于硅 - 纳米素技术技术的新颖的3D堆叠式体系结构,以改善内存访问性能,但降低功耗; (4)整合主要的研究创新和跨技术优化,以充分探索这些新兴技术实现的GPGPU设计的潜力。拟议的研究将促进GPGPU,以深度的亚微米缩放率保持正轨,并满足对高性能计算的需求不断增长的需求,因此将使众多现实生活中的应用受益。 This project will also contribute to society through engaging high-school and undergraduate students from minority-serving institutions in research, attracting women and other under-represented groups into graduate education, expanding the computer engineering curriculum with GPGPU power modeling and optimization techniques, disseminating research infrastructure for education and training, and collaborating with the GPU R&D industry.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renato Figueiredo其他文献

On the Performance and Cost of Cloud-Assisted Multi-Path Bulk Data Transfer
云辅助多路径批量数据传输的性能和成本
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa
  • 通讯作者:
    Kohei Ichikawa
A Pipeline for Deep Learning with Specimen Images in iDigBio - Applying and Generalizing an Examination of Mercury Use in Preparing Herbarium Specimens
iDigBio 中标本图像深度学习的流程 - 应用和推广汞在制备植物标本室标本中的使用检查
Extending PRAGMA-ENT for End Users using IPOP Overlay Networks
使用 IPOP 覆盖网络为最终用户扩展 PRAGMA-ENT
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa
  • 通讯作者:
    Kohei Ichikawa
Investigating the Performance and Scalability of Kubernetes on Distributed Cluster of Resource-Constrained Edge Devices
研究 Kubernetes 在资源受限边缘设备分布式集群上的性能和可扩展性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vahid Daneshmand;Renato Figueiredo;Kohei Ichikawa;Keichi Takahashi;Kundjanasith Thonglek and Kensworth Subratie
  • 通讯作者:
    Kundjanasith Thonglek and Kensworth Subratie
保育者は保育カンファレンスを行うことで何を学ぶのか?ー質的研究のメタ統合の試みからー
托儿工作者通过举办托儿会议学到了什么?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyuho Jeong;Renato Figueiredo;Kohei Ichikawa;上田敏丈
  • 通讯作者:
    上田敏丈

Renato Figueiredo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renato Figueiredo', 18)}}的其他基金

Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
  • 批准号:
    2318862
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: FaaSr: Enabling Cloud-native Event-driven Function-as-a-Service Computing Workflows in R
协作研究:要素:FaaSr:在 R 中启用云原生事件驱动的函数即服务计算工作流程
  • 批准号:
    2311123
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
I-Corps: Software-Defined Overlay Virtual Private Network for Edge Computing
I-Corps:用于边缘计算的软件定义的覆盖虚拟专用网络
  • 批准号:
    2134548
  • 财政年份:
    2021
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: GOALI: Predicting and Labeling Email Phishing from Social Influence Cues and User Characteristics.
SaTC:核心:小:GOALI:根据社会影响线索和用户特征预测和标记电子邮件网络钓鱼。
  • 批准号:
    2028734
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: EdgeVPN: Seamless Secure Virtual Networking for Edge and Fog Computing
协作研究:要素:EdgeVPN:用于边缘和雾计算的无缝安全虚拟网络
  • 批准号:
    2004441
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: Cyberinfrastructure Enabling End-to-End Workflows for Aquatic Ecosystem Forecasting
合作研究:CIBR:网络基础设施支持水生生态系统预测的端到端工作流程
  • 批准号:
    1933102
  • 财政年份:
    2020
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: REVELARE: A Hardware-Supported Dynamic Information Flow Tracking Framework for IoT Security and Forensics
SaTC:核心:媒介:协作:REVELARE:用于物联网安全和取证的硬件支持的动态信息流跟踪框架
  • 批准号:
    1801599
  • 财政年份:
    2018
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: FIRMA: Personalized Cross-Layer Continuous Authentication
SaTC:核心:小型:FIRMA:个性化跨层连续身份验证
  • 批准号:
    1814557
  • 财政年份:
    2018
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
NeTS: Small: PerSoNet: Overlay Virtual Private Networks Spanning Personal Clouds and Social Peers
NetS:小型:PerSoNet:跨越个人云和社交对等的覆盖虚拟专用网络
  • 批准号:
    1527415
  • 财政年份:
    2015
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
SI2-SSE: Peer-to-Peer Overlay Virtual Network for Cloud Computing Research
SI2-SSE:用于云计算研究的点对点覆盖虚拟网络
  • 批准号:
    1339737
  • 财政年份:
    2013
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 24.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了