Collaborative Research: CIBR: Incorporating Crystallography and Cryo-EM tools into Foldit

合作研究:CIBR:将晶体学和冷冻电镜工具纳入 Foldit

基本信息

  • 批准号:
    2051282
  • 负责人:
  • 金额:
    $ 55.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The goal of structural biologists is to visualize biomolecules at atomic resolution, which is a critical step in understanding all aspects of biology, including diseases and their cures. The dominant experimental methods for structure determination, called Cryo-Electron Microscopy and X-Ray Crystallography, rely upon fitting the atoms from biological molecules into three-dimensional “maps”, seeking agreement with experimental data. This fitting process is laborious and difficult, but preliminary studies have shown that this task could be performed very effectively by citizen scientists playing the biochemistry computer game Foldit. As a premier citizen science computer game, Foldit has already been played by over 600,000 people since its inception. This project aims to improve the capabilities of Foldit to enable scientists and citizen scientists alike to accurately build biological structures of varying types and sizes. This capability could strongly improve science’s ability to understand the basis of many biological phenomena. In addition to these scientific benefits, this project benefits both science education and society as a whole. This new capability will enhance the variety and quality of educational options using Foldit, improving it as a major interface between the scientific community and society.There is an ongoing need for improvements for methods to solve crystal and cryo-EM structures. Foldit is a citizen science project in which users aid in many biochemistry problems, including model building and real space refinement in protein structure solving projects. Early tests suggest that these ventures produce high quality crystal and cryo-EM structures, but many improvements are needed to make Foldit a go-to option for structure solving problems. Recently, new versions of Foldit have been introduced that can be used by single scientists or lab groups, in addition to standard citizen science Foldit puzzles. These options will be leveraged to create a multi-scale modeling toolbox for structural biology problems. The additions proposed in this grant include integrating new crystallography refinement capabilities within Foldit, and adding new modes that allow much larger proteins to be handled in Foldit for cryo-EM. Together, these improvements will make Foldit a state-of-the-art structure solving suite for crystallography and cryo-EM. Significant updates in the results of the project can be found at https://www.fold.it.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结构生物学家的目的是在原子分辨率下可视化生物分子,这是理解生物学各个方面的关键步骤,包括疾病及其治愈方法。用于确定结构的主要实验方法,称为冷冻电子显微镜和X射线晶体学,依赖于将生物分子的原子拟合到三维“地图”中,以寻求与实验数据一致的一致。这个拟合过程是实验室和困难的,但是初步研究表明,这项任务可以由公民科学计算机游戏折叠非常有效地执行。作为一款主要的公民科学计算机游戏,自成立以来,Foldit已经有超过60万人玩。该项目旨在提高折叠功能,以使科学家和公民科学家能够准确地建立不同类型和大小的生物结构。能力可以强烈提高科学理解许多生物学现象的基础的能力。除了这些科学的好处外,该项目还受益于科学教育和整个社会。这种新功能将使用折叠式提高教育选择的多样性和质量,从而将其作为科学界与社会之间的主要界面提高。对于解决晶体和冷冻EM结构的方法,不断需要改进。 Foldit是一个公民科学项目,用户在该项目中协助许多生物化学问题,包括模型建设和蛋白质结构解决项目中的真实空间改进。早期测试表明,这些合资企业会产生高质量的晶体和冷冻EM结构,但是需要进行许多改进才能使折叠问题成为解决结构解决问题的首选。最近,除了标准的公民科学折叠难题外,还引入了新版本的折叠版本。这些选项将被利用,以创建用于结构生物学问题的多尺度建模工具箱。该赠款中提出的增加包括在折叠中整合新的晶体学改进功能,并添加新模式,这些模式允许在折叠中处理更大的蛋白质,以用于冷冻EM。这些改进将使折叠术成为解决晶体学和冷冻EM的最先进结构套件。该项目结果的重大更新可以在https://www.fold.it.it.t.t.ins奖中找到反映NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准来评估,被视为珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Firas Khatib其他文献

Correction for Lee et al., RNA design rules from a massive open laboratory
Lee 等人的更正,来自大型开放实验室的 RNA 设计规则
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Noor Siddiqui;Scott Horowitz;B. Koepnick;Raoul Martin;Agnes Tymieniecki;Amanda A. Winburn;Seth Cooper;J. Flatten;D. Rogawski;N. Koropatkin;Tsinatkeab T. Hailu;Neha Jain;P. Koldewey;Logan S. Ahlstrom;Matthew R. Chapman;Andrew P. Sikkema;M. Skiba;F. Maloney;Felix R. M. Beinlich;Zoran Popovic;David Baker;Firas Khatib;James C. A. Bardwell;R. Joosten
  • 通讯作者:
    R. Joosten
Protein preliminaries and structure prediction fundamentals for computer scientists
计算机科学家的蛋白质基础知识和结构预测基础知识
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmood A. Rashid;Firas Khatib;A. Sattar
  • 通讯作者:
    A. Sattar
An initial examination of computer programs as creative works.
对计算机程序作为创造性作品的初步审查。
Guided macro-mutation in a graded energy based genetic algorithm for protein structure prediction
用于蛋白质结构预测的基于分级能量的遗传算法中的引导宏突变
  • DOI:
    10.1016/j.compbiolchem.2016.01.008
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mahmood A. Rashid;S. Iqbal;Firas Khatib;T. Hoque;A. Sattar
  • 通讯作者:
    A. Sattar
Crystal structure of a monomeric retroviral protease solved by protein folding game players
蛋白质折叠游戏玩家解析单体逆转录病毒蛋白酶的晶体结构
  • DOI:
    10.1038/nsmb0312-364b
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Firas Khatib;F. DiMaio;Seth Cooper;Maciej Kazmierczyk;M. Gilski;S. Krzywda;Helena Zábranská;I. Pichová;James M. Thompson;Zoran Popovic;M. Jaskólski;D. Baker
  • 通讯作者:
    D. Baker

Firas Khatib的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Firas Khatib', 18)}}的其他基金

Postdoctoral Research Fellowships in Biology for FY 2009
2009财年生物学博士后研究奖学金
  • 批准号:
    0906026
  • 财政年份:
    2009
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Fellowship

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
  • 批准号:
    2027241
  • 财政年份:
    2021
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
  • 批准号:
    2027234
  • 财政年份:
    2021
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: Incorporating Crystallography and Cryo-EM Tools in Foldit
合作研究:CIBR:在 Foldit 中结合晶体学和冷冻电镜工具
  • 批准号:
    2051305
  • 财政年份:
    2021
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Standard Grant
Collaborative Research: CIBR: The OpenBehavior Project
合作研究:CIBR:开放行为项目
  • 批准号:
    1948181
  • 财政年份:
    2021
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
  • 批准号:
    2027228
  • 财政年份:
    2021
  • 资助金额:
    $ 55.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了