Decentralized optimal control of cooperating networked multi-agent systems

协作网络多智能体系统的分散最优控制

基本信息

  • 批准号:
    1931600
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Multi-agent systems encompass a broad spectrum of applications, ranging from connected autonomous vehicles and the emerging internet of cars, where the spatial domain may be hundreds of miles with time horizons over hours of days, to micro-air vehicles which operate over meter length and minute time scales, and down to nano-manipulation with nanometer spatial microsecond time resolution. This project seeks to address five key challenges in networked multi-agent systems: (1) scalability, necessitated by the increasing large-scale nature of the networked systems being designed, (2) autonomy at the individual level, required to ensure a resilient and secure system, (3) communication that is secure and efficient, particularly crucial in wireless settings where the agents have limited energy resources, (4) avoiding local optima that arise from the complex nature of the system interactions and which may yield poor performance, and (5) exploiting real-time data, taking advantage of the modern reality of data-rich environments. While the core of the project is centered on a theoretical approach that extends over the diverse length and time scales needed, it also includes experimental validation using robotic platforms that will provide a platform to showcase and communicate results to a broad audience.The scope of the proposed project is captured through a general optimization (both static and dynamic) framework which encompasses the vast majority of interesting problems faced by researchers and practitioners. Within this framework, we will pursue three specific tasks: (1) Develop on-line solutions for dynamic optimization problems in networked multi-agent systems, (2) Determine when decentralization without sacrificing the performance of a centralized solution is possible and develop explicit decentralized control algorithms even in cases where some performance degradation is needed, and (3) Address the challenge of multiple local minima in the optimization through the use of boosting functions to escape those local optima. The intellectual merit of these tasks lies in three conceptual cornerstones: (1) Replacing the traditional time- driven paradigm with an event-driven approach, allowing for algorithms whose complexity grows with the number of such events, not the state dimensionality of the network, (2) Using a data-driven approach to optimization, allowing for an approach which can handle the increasing complexity of real-world systems where traditional approaches based on elegant but often inadequate classical models fail, and (3) Escaping local optima in distributed optimization, where the use of novel mechanisms for escaping those local solutions overcomes the limitations inherent to gradient-based approaches. The project is built upon a framework for networked multi-agent systems that is extremely broad, encompassing sub-problems such as coverage control, consensus, persistent monitoring, and optimal formation control, and application domains from connected automated vehicles down to nano-manipulation. As such, our research will advance the state-of-the-art in all domains that rely on networked systems. In addition, specific tasks on education and outreach will be pursued, including hosting rising high school seniors in the labs of the PIs for a summer research internship, showcasing the results to middle and high-school students through demonstrations with mobile robots, and engaging undergraduate students in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多机构系统涵盖了广泛的应用程序,从连接的自动驾驶汽车和新兴的汽车互联网范围内,空间域可能会在几个小时内随时间范围内随时间范围而到数百英里,再到微型航空车辆,这些汽车的微型机车,这些车辆可以通过米量和微小的时间尺度进行操作,再到Nano-Nano-Manifulation tos Nano-nano-Memepation-Nano-Anipulation-Nano-Anipulation-Nano-Anaino-AnanoMecondial Spatial Spatidial SpatiDolution。 This project seeks to address five key challenges in networked multi-agent systems: (1) scalability, necessitated by the increasing large-scale nature of the networked systems being designed, (2) autonomy at the individual level, required to ensure a resilient and secure system, (3) communication that is secure and efficient, particularly crucial in wireless settings where the agents have limited energy resources, (4) avoiding local optima that arise from the complex nature of the system interactions and which可能会产生差的性能,(5)利用数据丰富的环境的现代现实来利用实时数据。虽然该项目的核心集中在一种理论方法上,该方法扩展了所需的多样性和时间尺度,但它还包括使用机器人平台的实验验证,该验证将提供一个平台,以向广泛的受众群体展示和传达结果。通过一般性优化(静态和动态)范围捕获了拟议项目的范围,这些框架涵盖了众多的研究者和研究者,由研究人员置于研究者和练习者。在此框架内,我们将追求三个特定的任务:(1)开发在网络多代理系统中动态优化问题的在线解决方案,(2)在不牺牲集中式解决方案的性能的情况下何时进行分散式化的效果,并开发出明确的分散性控制算法,即使在需要偏离的情况下,即使在多个位置质疑的情况下,也需要(3)启动的功能,并且(3)在多个位置的范围内(3),以及(3),以及3) Optima。这些任务的智力优点在于三个概念基石:(1)用事件驱动的方法替换传统的时间驱动范式,允许其复杂性随着此类事件的数量而增长的算法,而不是通过网络的状态维度来实现的,(2)使用越来越多的数据进行优化的方法,可以在范围内进行优化的方法,从而可以换取一种方法,从而可以进行优化的方法,从而可以努力地进行优化,从而可以努力地努力,从而可以努力地进行优化,从而可以努力地努力。不足的经典模型失败,(3)在分布式优化中逃脱了局部优化,其中使用新型机制逃脱了这些局部解决方案克服了基于梯度的方法固有的局限性。该项目建立在一个网络多代理系统的框架基础上,该系统非常广泛,包括覆盖范围控制,共识,持续性监控和最佳的形成控制以及从连接的自动化车辆到纳米操作的应用域。因此,我们的研究将推进依赖网络系统的所有领域的最新面积。此外,还将进行有关教育和宣传的具体任务,包括在PI的实验室中举办高中生,以进行夏季研究实习,向中学和高中生展示结果,并通过移动机器人进行演示,并让本科生参与研究中的研究。

项目成果

期刊论文数量(67)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Greedy Initialization for Distributed Persistent Monitoring in Network Systems
网络系统中分布式持久监控的贪婪初始化
  • DOI:
    10.1016/j.automatica.2021.109943
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Welikala, S.;Cassandras C.G.
  • 通讯作者:
    Cassandras C.G.
Feasibility-Guided Learning for Constrained Optimal Control Problems
Learning Feasibility Constraints for Control Barrier Functions
学习控制屏障函数的可行性约束
  • DOI:
    10.23919/ecc57647.2023.10178142
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao, Wei;Cassandras, Christos G.;Belta, Calin A.
  • 通讯作者:
    Belta, Calin A.
Optimal coverage control of stationary and moving agents under effective coverage constraints
有效覆盖约束下静止和移动主体的最优覆盖控制
  • DOI:
    10.1016/j.automatica.2023.111236
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Sun, Xinmiao;Ren, Mingli;Ding, Da-Wei;Cassandras, Christos G.
  • 通讯作者:
    Cassandras, Christos G.
A new performance bound for submodular maximization problems and its application to multi-agent optimal coverage problems
子模最大化问题的新性能界限及其在多智能体最优覆盖问题中的应用
  • DOI:
    10.1016/j.automatica.2022.110493
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Welikala, Shirantha;Cassandras, Christos G.;Lin, Hai;Antsaklis, Panos J.
  • 通讯作者:
    Antsaklis, Panos J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Andersson其他文献

Underwater robots: Motion and force control of vehicle manipulator systems, Gianluca Antonelli (Ed.); Springer, Berlin, Heidelberg, 2003, ISBN: 3-540-00054-2
  • DOI:
    10.1016/j.automatica.2005.10.003
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sean Andersson
  • 通讯作者:
    Sean Andersson

Sean Andersson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Andersson', 18)}}的其他基金

Collaborative Research: Dynamic Control and Separation of Microparticles in Fluids using Optical Whispering Gallery Mode Resonant Forces
合作研究:利用光学回音壁模式共振力动态控制和分离流体中的微粒
  • 批准号:
    1661586
  • 财政年份:
    2017
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Compressive Robotic Systems: Gaining Efficiency Through Sparsity in Dynamic Environments
协作研究:压缩机器人系统:通过动态环境中的稀疏性提高效率
  • 批准号:
    1562031
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Detection and Tracking of Multiple Dynamic Targets with Cooperating Networked Agents
通过协作网络代理检测和跟踪多个动态目标
  • 批准号:
    1509084
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
IDBR: Type A: Collaborative research: High-speed AFM imaging of dynamics on biopolymers through non-raster scanning
IDBR:A 型:合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
  • 批准号:
    1352729
  • 财政年份:
    2014
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Speed AFM through Compressed Sensing
合作研究:通过压缩感知实现高速 AFM
  • 批准号:
    1234845
  • 财政年份:
    2012
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Control for Single Molecule Tracking
职业:单分子追踪的非线性控制
  • 批准号:
    0845742
  • 财政年份:
    2009
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: A formal approach to the control of stochastic dynamic systems
DynSyst_Special_Topics:随机动态系统控制的形式化方法
  • 批准号:
    0928776
  • 财政年份:
    2009
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
IDBR: Simultaneous Tracking of Multiple Particles in Confocal Microscopy
IDBR:在共焦显微镜中同时跟踪多个粒子
  • 批准号:
    0649823
  • 财政年份:
    2007
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于情境最佳化的模型预测控制方法研究
  • 批准号:
    62303416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水环境容量控制目标下的流域最佳管理措施空间降尺度优化方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水环境容量控制目标下的流域最佳管理措施空间降尺度优化方法研究
  • 批准号:
    52109058
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
离子引擎供电电源的超高增益变换器及最佳负载点运行控制
  • 批准号:
    51907032
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
面向最佳热负荷分配的氧化铝多效降膜蒸发过程的建模与优化控制方法
  • 批准号:
    61963036
  • 批准年份:
    2019
  • 资助金额:
    39 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
  • 批准号:
    10822182
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
  • 批准号:
    2226936
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
  • 批准号:
    2890822
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
  • 批准号:
    23H01136
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
  • 批准号:
    23K13359
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了