Collaborative Research: Compressive Robotic Systems: Gaining Efficiency Through Sparsity in Dynamic Environments
协作研究:压缩机器人系统:通过动态环境中的稀疏性提高效率
基本信息
- 批准号:1562031
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates autonomous control and coordination of a group of robots that are tasked to explore, map, or monitor the environment they are in. The project aims to enhance the capabilities of such a group of robots by integrating Compressive Sensing for data compression. Compressive sensing enables robots to quickly extract information from their environment, efficiently communicate that information to each other over a wireless network, and intelligently direct their motion to obtain relevant sensing data in the future. Significant theoretical and technical challenges must be addressed in this project to realize the potential of a compressive robotic sensing system. The project will demonstrate results in two specific applications, (i) driving a group of aerial robots to monitor their environment, (ii) driving robotic micro-probes to measure processes inside a living cell. The project also seeks to disseminate its findings through educational and outreach activities. Results will be incorporated into undergraduate and graduate level courses in control theory at both Boston University and Stanford University. The researchers will also work with high school students and undergraduates through research mentorship programs and through lab demonstrations for visitors.The fundamental goal of the project is to create rigorously analyzed algorithms that take advantage of sparse signal descriptions to create efficient motion plans for a team of sensing robots that monitor the environment. The driving hypothesis is that sparsity can greatly extend the performance of robotic sensing systems by saving battery power, computation, storage, and communication bandwidth---all critically limited resources for robotic platforms. The research team will take a Bayesian approach to Compressive Sensing, which allows for sensing quality to be quantified with information theoretic metrics such as entropy. A receding horizon control approach will be developed for driving robotic sensors to collect the most valuable sensor data, in order to reconstruct a sparse representation of their environment using Compressive Sensing. Such control strategies will be adapted to both static and dynamic environments, and both centralized and distributed solutions will be sought. The concepts developed in this project will be applied to two specific sensing domains: (i) networks of quadrotor sensing robots sensing environmental data and (ii) confocal fluorescence microscopy for three-dimensional imaging of dynamics in bio-molecular systems. These two application domains have radically different length and time scales, dynamical properties, and information content. A successful application of the ideas developed in this project to both these domains will prove the generality of the Compressive Robotic Sensing System concept.
该项目调查了一组机器人的自主控制和协调,这些机器人要探索,映射或监视其所处环境。该项目旨在通过集成数据压缩的压缩感应来增强此类机器人的能力。压缩传感使机器人能够从其环境中快速提取信息,通过无线网络有效地互相传达信息,并智能地指导其运动以在将来获得相关的感应数据。 在该项目中必须解决重大的理论和技术挑战,以实现压缩机器人传感系统的潜力。 该项目将在两个特定的应用中展示结果:(i)驱动一组空中机器人监视其环境,(ii)驱动机器人微型探测器以测量活细胞内的过程。 该项目还旨在通过教育和外展活动传播其发现。 结果将纳入波士顿大学和斯坦福大学控制理论的本科和研究生级课程。 研究人员还将通过研究指导计划和访问者的实验室演示与高中生和本科生合作。该项目的基本目标是创建严格分析的算法,以利用稀疏信号描述,以创建有效的运动计划,以为监控环境的一组感应机器人创建有效的运动计划。 驾驶假设是,稀疏性可以通过节省电池电量,计算,存储和通信带宽来极大地扩展机器人传感系统的性能 - 所有机器人平台的资源都非常有限。 研究团队将采用贝叶斯方法来进行压缩感测,从而可以通过信息理论指标(例如熵)来量化传感质量。 将开发一种恢复的地平线控制方法,用于驱动机器人传感器收集最有价值的传感器数据,以便使用压缩传感重建对环境的稀疏表示。 这种控制策略将适应静态和动态环境,并将寻求集中和分布式解决方案。该项目中开发的概念将应用于两个特定的传感域:(i)四个感应机器人的网络感应环境数据和(ii)共聚焦荧光显微镜,用于生物分子系统中动力学的三维成像。这两个应用程序域具有根本不同的长度和时间尺度,动力学属性和信息内容。该项目在这两个领域中开发的思想的成功应用将证明压缩机器人传感系统概念的一般性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scheduling Multiple Agents in a Persistent Monitoring Task Using Reachability Analysis
使用可达性分析在持久监控任务中调度多个代理
- DOI:10.1109/tac.2019.2922506
- 发表时间:2019
- 期刊:
- 影响因子:6.8
- 作者:Yu, Xi;Andersson, Sean B.;Zhou, Nan;Cassandras, Christos G.
- 通讯作者:Cassandras, Christos G.
Optimal Threshold-Based Distributed Control Policies for Persistent Monitoring on Graphs
- DOI:10.23919/acc.2019.8814440
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Nan Zhou;C. Cassandras;Xi Yu;S. Andersson
- 通讯作者:Nan Zhou;C. Cassandras;Xi Yu;S. Andersson
Reconstruction of ultrasound signals using randomly acquired samples in a sparse environment
在稀疏环境中使用随机采集的样本重建超声信号
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Pinto, Samuel;Sanchez, Sean R;Doran, Liam;Ryan, Aidan;Andersson, Sean B
- 通讯作者:Andersson, Sean B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Andersson其他文献
Underwater robots: Motion and force control of vehicle manipulator systems, Gianluca Antonelli (Ed.); Springer, Berlin, Heidelberg, 2003, ISBN: 3-540-00054-2
- DOI:
10.1016/j.automatica.2005.10.003 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:
- 作者:
Sean Andersson - 通讯作者:
Sean Andersson
Sean Andersson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Andersson', 18)}}的其他基金
Decentralized optimal control of cooperating networked multi-agent systems
协作网络多智能体系统的分散最优控制
- 批准号:
1931600 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic Control and Separation of Microparticles in Fluids using Optical Whispering Gallery Mode Resonant Forces
合作研究:利用光学回音壁模式共振力动态控制和分离流体中的微粒
- 批准号:
1661586 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Detection and Tracking of Multiple Dynamic Targets with Cooperating Networked Agents
通过协作网络代理检测和跟踪多个动态目标
- 批准号:
1509084 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IDBR: Type A: Collaborative research: High-speed AFM imaging of dynamics on biopolymers through non-raster scanning
IDBR:A 型:合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
- 批准号:
1352729 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: High-Speed AFM through Compressed Sensing
合作研究:通过压缩感知实现高速 AFM
- 批准号:
1234845 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Nonlinear Control for Single Molecule Tracking
职业:单分子追踪的非线性控制
- 批准号:
0845742 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: A formal approach to the control of stochastic dynamic systems
DynSyst_Special_Topics:随机动态系统控制的形式化方法
- 批准号:
0928776 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IDBR: Simultaneous Tracking of Multiple Particles in Confocal Microscopy
IDBR:在共焦显微镜中同时跟踪多个粒子
- 批准号:
0649823 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于神经网络多因素交互作用分析的燃烧高温后花岗岩冲击抗压性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于神经网络多因素交互作用分析的燃烧高温后花岗岩冲击抗压性能研究
- 批准号:42202307
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
深海螺旋柱形耐压壳抗压机理与仿生设计方法研究
- 批准号:52171258
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
深海螺旋柱形耐压壳抗压机理与仿生设计方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
MT1-Nrf2-GPX4信号轴调节心肌细胞铁死亡抵抗压力负荷型慢性心衰的机制研究
- 批准号:82000373
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
- 批准号:
2211696 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
- 批准号:
2152289 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
- 批准号:
2152070 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
- 批准号:
2211660 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Compressive Robotic Sensing Systems: Gaining Efficiency through Sparsity in Dynamic Sensing Environments
合作研究:压缩式机器人传感系统:通过动态传感环境中的稀疏性提高效率
- 批准号:
1562335 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant