BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
基本信息
- 批准号:2226936
- 负责人:
- 金额:$ 54.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Pivot award will fund research that enables the intelligent deployment of optimal strategies for mitigating the damaging effects of rain-induced flooding, thereby promoting the progress of science and advancing the national prosperity, welfare, and health. Climate change is causing more frequent extreme weather events, like heavy rains, with disastrous consequences to infrastructure, public health, and national security. As the population grows and new urban centers develop, flood mitigation becomes a complex task that requires high-level coordination, is time critical, occurs in the presence of uncertainty and lack of full observability, and may be only partially feasible due to infrastructure constraints. This project will build a control framework powered by artificial intelligence to operate reservoirs in an optimal way for regulating streamflow while accounting for incomplete data acquisition, unpredictable effects of extreme weather, and ethical decision-making. The results from this research will benefit the scientific communities of hydrologic systems, control, and robotics, with applications also to intelligent systems with machine ethics. In addition, this project will provide undergraduate research opportunities and outreach activities, including educational materials for K-6 students to learn how climate change affects people’s lives, with emphasis on enhancing diversity, equity, and inclusion.This research aims to make fundamental contributions to methods for combining physics-informed and recurrent neural networks to predict the evolution of dynamic systems while also quantifying the effects of uncertainty, as well as for constructing learning-based control synthesis algorithms for complex high-level tasks that are temporally constrained and potentially infeasible in a partially observable environment. Data collected from US Geological Survey stations will be used to parameterize hillslope-link hydrologic models for streamflow forecasts. Small model simulations will then be combined with machine learning techniques to forecast streamflows with uncertainty quantification. Next, a formal description of the flood mitigation task that also accounts for lack of observability will be used to characterize the cost of violating temporal and economic constraints and ethical preferences. Finally, reinforcement learning techniques will be used to train a control agent to intelligently accomplish infeasible tasks to the greatest possible degree. A case study of the flood of 2008 of the Iowa-Cedar Watershed will be used to demonstrate the model development and control framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项促进工程变革和公平进步的研究理念 (BRITE) 枢轴奖将资助能够智能部署最佳策略的研究,以减轻降雨引起的洪水的破坏性影响,从而促进科学进步和促进国家繁荣,气候变化导致暴雨等极端天气事件更加频繁,给基础设施、公共卫生和国家安全带来灾难性后果。随着人口的增长和新城市中心的发展,防洪成为一项复杂的任务。高层协调时间紧迫,在存在不确定性和缺乏全面可观测性的情况下发生,并且由于基础设施的限制,可能仅部分可行。该项目将建立一个由人工智能驱动的控制框架,以最佳方式运行水库。用于调节水流,同时考虑不完整的数据采集、极端天气的不可预测影响以及道德决策。这项研究的结果将有利于水文系统、控制和机器人技术的科学界,也可应用于具有机器道德的智能系统。此外,该项目还将提供本科生研究机会和外展活动,包括为 K-6 学生提供教育材料,以了解气候变化如何影响人们的生活,重点是增强多样性、公平性和包容性。这项研究旨在为将物理知识和循环神经网络相结合的方法做出根本性贡献预测动态系统的演化,同时量化不确定性的影响,以及为复杂的高级任务构建基于学习的控制合成算法,这些任务在从美国地质调查局收集的数据中受到时间限制且可能不可行。车站将是然后,将用于对山坡连接水文模型进行参数化以进行水流预测,然后将小型模型模拟与机器学习技术相结合,以不确定性量化来预测水流。接下来,将使用洪水缓解任务的正式描述,该描述也考虑了可观测性的缺乏。最后,强化学习技术将用于训练控制代理以最大程度地智能地完成不可行的任务。爱荷华州雪松流域将用于演示模型开发和控制框架。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model-based motion planning in POMDPs with temporal logic specifications
具有时间逻辑规范的 POMDP 中基于模型的运动规划
- DOI:10.1080/01691864.2023.2226191
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Li, Junchao;Cai, Mingyu;Wang, Zhaoan;Xiao, Shaoping
- 通讯作者:Xiao, Shaoping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaoping Xiao其他文献
Model-free reinforcement learning for motion planning of autonomous agents with complex tasks in partially observable environments
用于在部分可观察环境中执行复杂任务的自主代理的运动规划的无模型强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junchao Li;Mingyu Cai;Zhen Kan;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Molecular dynamics modeling and simulation of lubricant between sliding solids
滑动固体间润滑剂的分子动力学建模与模拟
- DOI:
10.1142/s2424913017500096 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Mir Ali Ghaffari;Yan Zhang;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue
修正边界条件的近场动力学及其在滚动接触疲劳多尺度建模中的实现
- DOI:
10.1142/s1756973718410032 - 发表时间:
2019-05 - 期刊:
- 影响因子:1.5
- 作者:
Mir Ali Ghaffari;Yanjue Gong;Siamak Attarian;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Reinforcement learning-based motion planning in partially observable environments under ethical constraints
道德约束下部分可观察环境中基于强化学习的运动规划
- DOI:
10.1007/s43681-024-00441-6 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junchao Li;Mingyu Cai;Shaoping Xiao - 通讯作者:
Shaoping Xiao
Intelligent Agricultural Management Considering N2O Emission and Climate Variability with Uncertainties
考虑N2O排放和不确定性气候变化的智能农业管理
- DOI:
10.48550/arxiv.2402.08832 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhaoan Wang;Shaoping Xiao;Jun Wang;Ashwin Parab;Shivam Patel - 通讯作者:
Shivam Patel
Shaoping Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaoping Xiao', 18)}}的其他基金
Machine Learning–Enhanced Multiscale Modeling of Spatially Tailored Materials
机器学习 - 空间定制材料的增强多尺度建模
- 批准号:
2104383 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
SGER: A Nanoelectromechanical Design for Carbon Nanotube-Based Memory Cells at Finite Temperatures
SGER:有限温度下基于碳纳米管的存储单元的纳米机电设计
- 批准号:
0630153 - 财政年份:2006
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
相似国自然基金
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
电枢起动阶段枢轨接触面金属熔融物喷射特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端条件电磁轨道发射高速载流枢轨耦合特性演化机理研究
- 批准号:92166204
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:地区科学基金项目
极端条件电磁发射枢轨摩擦副材料表面层时空演化机制及其非线性构效关系与发射动力学研究
- 批准号:92166202
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:地区科学基金项目
梯度多孔β钛合金人工可动寰枢椎的生物力学及骨整合机制研究
- 批准号:
- 批准年份:2021
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
BRITE Pivot: Accelerating Manufacturing and Realization of Perovskite Micro-Light Emitting Device (Micro-LED) Displays through Data-driven Learning
BRITE Pivot:通过数据驱动学习加速钙钛矿微发光器件 (Micro-LED) 显示器的制造和实现
- 批准号:
2227285 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
- 批准号:
2227496 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
- 批准号:
2309630 - 财政年份:2023
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Machine Learning Accelerated Optimization of Flash Lamp Processed Thin-films for Flexible Optoelectronic Applications
BRITE Pivot:机器学习加速优化用于柔性光电应用的闪光灯加工薄膜
- 批准号:
2135203 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BRITE Pivot: Machine Learning Enabled Rapid and Robust Three-Dimensional Nanomanufacturing
BRITE Pivot:机器学习实现快速、稳健的三维纳米制造
- 批准号:
2135585 - 财政年份:2022
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant