RI: Medium: To Sense or Not to Sense: Energy Efficient Adaptive Sensing for Autonomous Systems

RI:中:感知或不感知:自主系统的节能自适应传感

基本信息

  • 批准号:
    1900821
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Sensing and computation have been crucial to the significant progress in semi- and fully-autonomous vehicles and robots. Proliferation of many types of sensors (LIDARs, cameras, RADARs, etc.) and the advent of compute-heavy and data-hungry deep-learning approaches have increased the performance of autonomous systems by leaps and bounds. But the wide variety of sensors differ in terms of their performance, cost, and operational difficulty. Thus, specific sets of sensors are chosen for a particular task on a particular robot. This horses-for-courses approach often results in one-off systems that are incapable of adapting to many tasks or robots. Thus, to ensure safety and reliability, multi-tasking systems like autonomous vehicles have resorted to over-engineering, with upwards of 15 sensors and multiple GPUs/CPUs in any car. And, to make matters worse, many of the sensed data is eventually discarded as unwanted background. Thus, while the energy footprint of sensing and computations is increasing at an alarming rate, the flexibility or adaptability of these systems is still lacking. Much of this state of affairs can be attributed to the fact that sensors and algorithms face vastly different hardware and software challenges and are hence designed, developed, and manufactured in separate academic units or industries. This project takes a different approach: adaptively sense mostly (if not only) quantities which help solve the task accurately and within the allotted time. In other words, this project advocates folding adaptive and flexible sensing within a learning framework for autonomous systems. This is achieved by co-design and co-execution of sensing and algorithms to maximize accuracy and flexibility while minimizing expended energy and cost. The approach is motivated by how humans decide what, where, when, and how to sense and apply that to a robot learning framework. Research and education are closely integrated in a diverse and inclusive environment.The project consists of three fundamental research thrusts. Thrust 1: Development of highly novel and fully adaptive design and physical realization of 3D optical sensors. This thrust includes a fundamental mathematical framework that determines the optimal set of emitted and measured rays to achieve a particular task at hand. This is the mathematical foundation for developing a new class of sensors that detect and characterize obstacles---a time critical task of any autonomous system---with maximum energy efficiency, minimal latency (i.e., near-instantly) and with virtually no separate computation. Thrust 2: Novel decision-making framework that efficiently controls the adaptive sensors for the task at hand. This includes determining where and when to sense and adapting behavior policies accordingly. Thrust 3: Support the robot learning framework by learning and interacting with humans. The project will demonstrate the generality of adaptive sensing using three disparate autonomous systems that have broad societal impact: a) autonomous vehicles, b) assistive robots, and c) robots in manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和计算对于半自动和全自动车辆和机器人的重大进展至关重要。多种类型传感器(激光雷达、摄像头、雷达等)的激增以及计算量大、数据量大的深度学习方法的出现,使得自主系统的性能突飞猛进。但传感器种类繁多,其性能、成本和操作难度各不相同。因此,为特定机器人上的特定任务选择特定的传感器组。这种以马换路的方法通常会导致一次性系统无法适应许多任务或机器人。因此,为了确保安全性和可靠性,自动驾驶汽车等多任务系统已经诉诸过度设计,每辆车都配备了多达 15 个传感器和多个 GPU/CPU。而且,更糟糕的是,许多感测到的数据最终会作为不需要的背景而被丢弃。因此,虽然传感和计算的能量足迹正在以惊人的速度增加,但这些系统仍然缺乏灵活性或适应性。这种状况很大程度上可以归因于这样一个事实:传感器和算法面临着截然不同的硬件和软件挑战,因此是在不同的学术单位或行业中设计、开发和制造的。 该项目采用了不同的方法:自适应地感知大部分(如果不是唯一)有助于在指定时间内准确解决任务的数量。换句话说,该项目提倡在自主系统的学习框架内折叠自适应和灵活的传感。这是通过传感和算法的共同设计和共同执行来实现的,以最大限度地提高准确性和灵活性,同时最大限度地减少消耗的能源和成本。该方法的动机是人类如何决定什么、在哪里、何时以及如何感知并将其应用到机器人学习框架中。研究和教育在多元化和包容性的环境中紧密结合。该项目由三个基本研究方向组成。 主旨 1:开发高度新颖且完全自适应的 3D 光学传感器设计和物理实现。该推力包括一个基本的数学框架,该框架确定最佳的发射和测量射线集以实现手头的特定任务。这是开发新型传感器的数学基础,该传感器可检测和表征障碍物(任何自主系统的一项时间关键任务),具有最高的能源效率、最小的延迟(即接近即时)并且几乎不需要单独的传感器计算。主旨 2:新颖的决策框架,可有效控制自适应传感器来完成手头的任务。这包括确定何时何地感知并相应地调整行为策略。主旨 3:通过与人类学习和交互来支持机器人学习框架。 该项目将使用三种具有广泛社会影响的不同自主系统来展示自适应传感的普遍性:a) 自动驾驶车辆,b) 辅助机器人和 c) 制造机器人。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Traffic4D: Single View Longitudinal 4D Reconstruction of Repetitious Activity using Self-Supervised Experts
Traffic4D:使用自我监督专家对重复活动进行单视图纵向 4D 重建
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Fangyu;Reddy, N. Dinesh;Chen, Xudong;Narasimhan, Srinivasa G.
  • 通讯作者:
    Narasimhan, Srinivasa G.
TesseTrack: End-to-End Learnable Multi-Person Articulated 3D Pose Tracking
TesseTrack:端到端可学习多人关节式 3D 姿势跟踪
Deconvolving Diffraction for Fast Imaging of Sparse Scenes
用于稀疏场景快速成像的解卷积衍射
Holocurtains: Programming Light Curtains via Binary Holography
Holocurtains:通过二元全息术对光幕进行编程
Active Perception using Light Curtains for Autonomous Driving
使用光幕进行主动感知以实现自动驾驶
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivasa Narasimhan其他文献

Robot Safety Monitoring using Programmable Light Curtains
使用可编程光幕进行机器人安全监控
  • DOI:
    10.48550/arxiv.2404.03556
  • 发表时间:
    2024-04-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karnik Ram;Shobhit Aggarwal;R. Tamburo;Siddharth Ancha;Srinivasa Narasimhan
  • 通讯作者:
    Srinivasa Narasimhan
One-Step Image Translation with Text-to-Image Models
使用文本到图像模型的一步图像翻译
  • DOI:
    10.48550/arxiv.2403.12036
  • 发表时间:
    2024-03-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaurav Parmar;Taesung Park;Srinivasa Narasimhan;Jun
  • 通讯作者:
    Jun

Srinivasa Narasimhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivasa Narasimhan', 18)}}的其他基金

CPS: TTP Option: Medium: Discovering and Resolving Anomalies in Smart Cities
CPS:TTP 选项:中:发现并解决智慧城市中的异常情况
  • 批准号:
    2038612
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Photo-Scatterography: Unraveling Scattered Photons for Bio-Imaging
合作研究:计算光散射术:解开生物成像的散射光子
  • 批准号:
    1730147
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CPS: Synergy: TTP Option: Anytime Visual Scene Understanding for Heterogeneous and Distributed Cyber-Physical Systems
CPS:协同:TTP 选项:异构和分布式网络物理系统的随时视觉场景理解
  • 批准号:
    1446601
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Recognition of Materials
RI:媒介:协作研究:材料识别
  • 批准号:
    0964562
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CAREER: Making Computer Vision Successful in Scattering Media
职业:使计算机视觉在散射媒体领域取得成功
  • 批准号:
    0643628
  • 财政年份:
    2007
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fast and Accurate Volumetric Rendering of Scattering Phenomena in Computer Graphics
合作研究:计算机图形学中散射现象的快速准确体积渲染
  • 批准号:
    0541307
  • 财政年份:
    2006
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似国自然基金

基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Squaring the circle: making sense of the dusty, magnetized interstellar medium beyond two dimensions
化圆为方:理解二维之外的尘埃磁化星际介质
  • 批准号:
    RGPIN-2018-05965
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了