Molecular Mechanisms of CO2 Signal Transduction in Plants

植物中CO2信号转导的分子机制

基本信息

  • 批准号:
    1900567
  • 负责人:
  • 金额:
    $ 72.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Plant leaves have thousands of microscopic adjustable pores in their leaf surface, called stomata. These stomatal pores in the surface of leaves open and close to regulate the necessary uptake of carbon dioxide into plants from the air. However, these stomatal pores also are the main pathway by which plants lose water, by evaporation. A typical plant loses 200 to 500 water molecules through these stomatal pores for every carbon atom that is absorbed (assimilated) by the plant for growth. The opening and closing of stomata is regulated by signals that include the concentration of carbon dioxide (CO2) in the air. The concentration of CO2 in the air is now 50% higher and rising, compared to only 150 years ago, meaning that plants could theoretically more efficiently take up CO2 from the air, while losing less water. However, important mechanisms and genes that mediate this agronomically relevant CO2 response of stomatal pore aperture regulation remain unknown. This project will characterize newly found key genes and proteins and define cellular networks through which elevated carbon dioxide controls the closing of stomatal pores and how low CO2 controls the opening of stomatal pores. This research can develop the knowledge necessary for the breeding of plants with improved growth properties and enhanced water use efficiency. The ability to manipulate the response of stomatal pores to carbon dioxide is important for unfavorable weather conditions, agricultural ground water depletion and droughts that are becoming more frequent in several of the major agricultural regions in the US as well as globally. The scientists will pursue an outreach program with research internships, professional preparation and mentoring with the public Preuss School for disadvantaged high school students in San Diego County, as well as training and professional preparation of visiting underrepresented summer research interns with UC San Diego's ENLACE program and with Howard University. Project personnel will be active within community outreach work that brings science and innovation close to the public and the investigators will participate in a recently launched outreach program through presentations and discussions with underrepresented students at inner city high schools in San Diego.This project will use a combination of cell biological, biochemical, molecular genetic, mathematical modeling, genomic and systems biological approaches to identify new critical molecular components of the CO2 signaling network and characterize how this network operates to regulate stomatal pore apertures. The focus of this project is to identify how the CO2 stimulus is transmitted into the stomatal movement network, with these goals: (1) Biochemical mechanisms and network principles will be determined by which newly identified genes and the encoded proteins mediate early CO2 sensing and signal transduction. (2) New hypotheses will be investigated on how cell-to-cell signaling in leaves affects CO2 control of stomatal movements by combined computational modeling, genetics, metabolomics and molecular cell biology. (3) Newly isolated "chill" mutants that have cooler leaf temperatures and are defective in the dynamic CO2 response of grass stomata will be mapped and the underlying gene and protein of at least one rate-limiting gene will be isolated and its functions in stomatal movements of the specialized dumbbell-shaped guard cells of grasses will be determined.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物叶在其叶子表面有数千个可调孔,称为气孔。叶子表面的这些气孔孔打开和靠近,以调节二氧化碳从空气中的植物吸收。但是,这些气孔孔也是植物通过蒸发而流失水的主要途径。典型的植物通过这些气孔孔损失了200至500个水分子,每种被植物吸收(吸收)生长的碳原子。气孔的开口和关闭受空气中包括二氧化碳(CO2)浓度的信号调节。与仅150年前相比,空气中二氧化碳的浓度现在高出50%,这意味着植物在理论上可以更有效地从空气中吸收二氧化碳,同时减少水。然而,介导这种农业孔孔调节的这种农艺相关的二氧化碳反应的重要机制和基因尚不清楚。该项目将表征新发现的关键基因和蛋白质,并定义细胞网络,通过该网络,升高的二氧化碳控制着气孔孔的关闭,以及二氧化碳如何控制气孔孔的开口。这项研究可以发展具有改善生长特性并提高用水效率的植物繁殖所需的知识。操纵气孔孔对二氧化碳的反应的能力对于不利的天气条件,农业地下水耗竭和干旱在美国以及全球的几个主要农业地区变得越来越常见。科学家将在圣地亚哥县的公立普雷斯学院(Pruperuss Preuss School)进行研究实习,专业准备和指导,并在圣地亚哥县的公立学校进行指导,以及与UC San Diego的Enlace的Enlace计划和霍华德大学一起访问代表性不足的夏季研究实习生的培训和专业准备。项目人员将活跃于社区外展工作中,将科学和创新与公众接近,调查人员将通过与圣地亚哥内城高中的代表性不足的学生进行演讲和讨论,参与了一项最近启动的外展计划,该项目将使用该项目的组合使用细胞生物学,生物化学,批判性的摩尔群统一,统一的统一,基因组合型,属性,统一的生物学,基因组和系统,统一,属性,基因组和系统,统一,基因组成,基因组和系统。网络并表征该网络如何运行以调节气孔孔孔。该项目的重点是确定如何将二氧化碳刺激传输到气孔运动网络中,并具有以下目标:(1)生化机制和网络原理将确定新鉴定的基因和编码的蛋白质介导早期二氧化碳感应和信号转导。 (2)将研究叶片中的细胞到细胞信号传导如何通过结合计算建模,遗传学,代谢组学和分子细胞生物学影响二氧化碳的控制。 (3)新近隔离的“寒冷”突变体具有较冷的叶温度,并且将映射在草的动态二氧化碳响应中,并将映射至少一个限制基因的基本基因和蛋白质,并将其功能在Grass Forne and N. dem dem dem ne nsf中得到确定,并在其中的孔隙运动。使用基金会的智力优点和更广泛的影响评估标准进行评估。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure
  • DOI:
    10.7554/elife.56351
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Li Zhang;Yohei Takahashi;P. Hsu;Kollist Hannes;E. Merilo;P. Krysan;J. Schroeder
  • 通讯作者:
    Li Zhang;Yohei Takahashi;P. Hsu;Kollist Hannes;E. Merilo;P. Krysan;J. Schroeder
Signaling mechanisms in abscisic acid-mediated stomatal closure.
MPK12 in stomatal CO2 signaling: function beyond its kinase activity
MPK12 在气孔 CO2 信号传导中的作用:其功能超出其激酶活性
  • DOI:
    10.1111/nph.18913
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yeh, Chung‐Yueh;Wang, Yuh‐Shuh;Takahashi, Yohei;Kuusk, Katarina;Paul, Karnelia;Arjus, Triinu;Yadlos, Oleksii;Schroeder, Julian I.;Ilves, Ivar;Garcia‐Sosa, Alfonso T.
  • 通讯作者:
    Garcia‐Sosa, Alfonso T.
Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden
  • DOI:
    10.1002/pld3.198
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Cooper, Andrew M.;Felix, Didra;Schroeder, Julian, I
  • 通讯作者:
    Schroeder, Julian, I
Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling
  • DOI:
    10.1093/plphys/kiab344
  • 发表时间:
    2021-07-24
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Karanam, Aravind;He, David;Rappel, Wouter-Jan
  • 通讯作者:
    Rappel, Wouter-Jan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julian Schroeder其他文献

Impurity Effect on Edge-modes of Graphene
杂质对石墨烯边缘模式的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    祢冝淳太郎;楠見健介;宗正晋太郎;藤田麻友美;Julian Schroeder;射場 厚;河上裕;S. Oshima and M. Eto
  • 通讯作者:
    S. Oshima and M. Eto
真核型の脂質代謝経路は気孔の葉緑体形成 および気孔開閉応答に必須である
真核脂质代谢途径对于气孔叶绿体形成和气孔开/关反应至关重要。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    祢冝 淳太郎;宗正 晋太郎;宋 普錫;多田隈 遼亮; 楠見 健介;西田 生郎;Julian Schroeder;射場 厚
  • 通讯作者:
    射場 厚
Edema is not a reliable diagnostic sign to exclude small brain metastases
水肿并不是排除小脑转移瘤的可靠诊断标志
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    T. Schneider;Jan Felix Kuhne;Paul Bittrich;Julian Schroeder;T. Magnus;M. Mohme;M. Grosser;G. Schoen;J. Fiehler;S. Siemonsen
  • 通讯作者:
    S. Siemonsen
Pathway Reconstitution of Abscisic Acid Hormone Activation of SLAC1 Anion Channels via Novel ABA Signaling Protein Kinase
  • DOI:
    10.1016/j.bpj.2011.11.3003
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Dennis Brodsky;Benjamin Brandt;Shaowu Xue;Juntaro Negi;Koh Iba;Jaakko Kangasjarvi;Julian Schroeder
  • 通讯作者:
    Julian Schroeder
New Insights into Ca2+-Dependent Abscisic Acid Signalling in Guard Cells
对保卫细胞中 Ca2 依赖性脱落酸信号传导的新见解
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shintaro Munemasa;Benjamin Brandt;Cun Wang;Desiree Nguyen;Julian Schroeder
  • 通讯作者:
    Julian Schroeder

Julian Schroeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julian Schroeder', 18)}}的其他基金

Molecular Mechanisms of Stomatal Carbon Dioxide Signal Transduction in Plants
植物气孔二氧化碳信号转导的分子机制
  • 批准号:
    1616236
  • 财政年份:
    2016
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
  • 批准号:
    1414339
  • 财政年份:
    2014
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
CO2 Signal Transduction in Plants
植物中的二氧化碳信号转导
  • 批准号:
    0918220
  • 财政年份:
    2009
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Standard Grant
IGERT Plant System Biology Interdisciplinary Graduate Training Program
IGERT植物系统生物学跨学科研究生培养项目
  • 批准号:
    0504645
  • 财政年份:
    2005
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction
CO2信号转导的分子机制
  • 批准号:
    0417118
  • 财政年份:
    2004
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Conference on Specificity and Crosstalk in Plant Signal Transduction being held on January 22 - 27 2002: in Tahoe City, California.
植物信号转导中的特异性和串扰会议于 2002 年 1 月 22 日至 27 日在加利福尼亚州塔霍市举行。
  • 批准号:
    0123960
  • 财政年份:
    2001
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
  • 批准号:
    0077791
  • 财政年份:
    2000
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Voltage Dependent Calcium Channels in Higher Plants
美法合作研究:高等植物中电压依赖性钙通道
  • 批准号:
    9603438
  • 财政年份:
    1997
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Standard Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
  • 批准号:
    9506191
  • 财政年份:
    1995
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9157178
  • 财政年份:
    1991
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant

相似国自然基金

氮杂环卡宾分子笼限域纳米团簇的设计合成及电化学CO2还原机制研究
  • 批准号:
    22301239
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
等离激元增强的分子催化二氧化碳光还原及其机制研究
  • 批准号:
    22372079
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
柔性波纹状孔道结构实现超精准分子识别及二氧化碳捕获关键机制研究
  • 批准号:
    22376161
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
高CO2介导Hog1-MAPK调控双孢蘑菇采后细胞稳态的分子机制研究
  • 批准号:
    32372251
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于“分子阀门”机制构筑CO2筛分与电催化还原一体化反应及其机理研究
  • 批准号:
    22308185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular mechanisms of proton-sensing in CO2-dependent breathing
CO2 依赖性呼吸中质子传感的分子机制
  • 批准号:
    10740838
  • 财政年份:
    2022
  • 资助金额:
    $ 72.27万
  • 项目类别:
Understanding the molecular mechanisms that drive global CO2 fixation to improve photosynthesis
了解驱动全球二氧化碳固定以改善光合作用的分子机制
  • 批准号:
    MR/T020679/1
  • 财政年份:
    2020
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Fellowship
Elucidation of molecular mechanisms underlying the growth suppression of rice plants at elevated CO2 concentrations and development of techniques for releasing the suppression
阐明高二氧化碳浓度下水稻生长抑制的分子机制并开发释放抑制的技术
  • 批准号:
    15H04470
  • 财政年份:
    2015
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
  • 批准号:
    1414339
  • 财政年份:
    2014
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction
CO2信号转导的分子机制
  • 批准号:
    0417118
  • 财政年份:
    2004
  • 资助金额:
    $ 72.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了