Collaborative Research: Multiscale Characterization and Dynamics Modeling of Stomatal Function in Plants

合作研究:植物气孔功能的多尺度表征和动力学建模

基本信息

  • 批准号:
    1852184
  • 负责人:
  • 金额:
    $ 23.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This grant will support research that will improve our understanding of the functions of stomata, the micro-size pores in plant leaf surfaces. As the gatekeeper of carbon dioxide and water vapor exchange between plants and their surrounding environment, stomata are not only crucial to the health of the individual plants, but also have a direct and global impact on the evolution of our entire ecosystem. However, currently our understanding of stomatal movement and function is limited by the conventional strategies that only captured static, averaged, and long-term macro scale behaviors of stomata. Little is known about the qualitative characteristics of stomata behavior and functions at the micro-scale, and their correlation with the underlying physiological processes of the host plant. This award supports fundamental research to create a multiscale dynamics modeling framework centered on instantaneous stomatal movement. Success of this research will create a unique, powerful tool for stomata studies and a game-changing sensing device for monitoring and controlling plants' physiological activities, opening up and enabling a wide-range of fundamental biological research (e.g., defending mechanism of plants against insect attack, plant-environment interaction) and frontier agricultural applications (e.g., optimal crop growth control, rapid genotype to phenotype transition). Thus, results from this research will benefit both the U.S. society and the economy. The multidisciplinary nature of the research across dynamic system modeling and diagnostics, micro-electro-mechanical systems, and plant biology will help to attract and broaden participations of underrepresented groups in engineering and science fields, and positively impact engineering and science education. The multiscale characterization and modeling of stomatal movement can provide the tools needed for revealing the missing links between the internal molecular dynamics and the external cellular movement involved in stomatal regulation, and for mapping and correlating biomechanical evolutions of stomata and their underneath genetic roots. However, scientific challenges are yet to be addressed to establish such a modeling framework. The research team will create a biophysics-based multiscale stomatal dynamics model that links and correlates subcellular mechanical evolutions to microscale cellular activities during stomatal movement. The modeling approach will be built upon a novel atomic force microscope technique to quantitatively map nanomechanical evolutions during single stoma movement, and one-of-a-kind miniaturized sensors to measure the water vapor and electrical potential variations caused by the stomata movements. They will also identify, evaluate, and optimize the stomatal dynamics model through experiments, by using maize and Arabidopsis thaliana as example systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款将支持研究,以提高我们对气孔(植物叶表面中的微型毛孔)功能的理解。作为植物及其周围环境之间二氧化碳和水蒸气交换的看门人,气孔不仅对单个植物的健康至关重要,而且对我们整个生态系统的演变产生了直接和全球的影响。但是,目前,我们对气孔运动和功能的理解受到只捕获静态,平均和长期宏观尺度行为的传统策略的限制。对于微观尺度上的气孔行为和功能的定性特征以及它们与宿主植物的基本生理过程的相关性,知之甚少。该奖项支持基本研究,以创建一个以瞬时气孔运动为中心的多尺度动力学建模框架。这项研究的成功将为气孔研究创造一种独特,强大的工具,并为监视和控制植物的生理活动,开放并实现广泛的基本生物学研究(例如,植物的防御机制抗抗抗抗植物的生理活动)的独特而有力的工具(例如昆虫攻击,植物环境相互作用)和边境农业应用(例如,最佳农作物生长控制,快速基因型对表型过渡)。因此,这项研究的结果将使美国社会和经济受益。研究跨动态系统建模和诊断,微机械系统以及植物生物学的多学科性质将有助于吸引和扩大代表性不足的工程和科学领域的参与,并对工程和科学教育产生积极影响。气孔运动的多尺度表征和建模可以提供揭示内部分子动力学与气孔调节所涉及的外部细胞运动之间缺少联系的工具,以及映射和相关的气孔及其在遗传根下的生物力学演变。但是,要建立这样的建模框架,尚待解决科学挑战。研究团队将创建一个基于生物物理学的多尺度气孔动力学模型,该模型将亚细胞机械演变与气孔运动期间的微观细胞活性联系起来。该建模方法将建立在新型的原子力显微镜技术上,以在单骨运动过程中定量地绘制纳米力学的演变,并在单基因的微型传感器上进行定量绘制纳米力学的发展,以测量由气孔运动引起的水蒸气和电势变化。他们还将通过使用玉米和拟南芥作为示例系统来识别,评估,评估和优化的气孔动态模型。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估来评估的,并被认为值得支持。标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new high-frequency photoacoustic sensing probe using silicon acoustic delay lines
使用硅声延迟线的新型高频光声传感探头
Integration of microlenses on surface-micromachined optical ultrasound transducer array to improve detection sensitivity for parallel data readout
将微透镜集成在表面微机械光学超声换能器阵列上,以提高并行数据读出的检测灵敏度
  • DOI:
    10.1364/ol.476774
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yan, Zhiyu;Zou, Jun
  • 通讯作者:
    Zou, Jun
Large-scale 2D Surface-Micromachined Optical Ultrasound Transducer (SMOUT) array for 3D computed tomography
用于 3D 计算机断层扫描的大型 2D 表面微机械光学超声换能器 (SMOUT) 阵列
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Zou其他文献

Convergence of an adaptive finite element method for distributed flux reconstruction
分布式通量重构的自适应有限元方法的收敛性
  • DOI:
    10.1090/mcom/2961
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Yifeng Xu;Jun Zou
  • 通讯作者:
    Jun Zou
Quadratic Convergence of Levenberg-Marquardt Method for Elliptic and Parabolic Inverse Robin Problems
椭圆和抛物型逆罗宾问题的 Levenberg-Marquardt 方法的二次收敛性
PLAAT1 promotes p53 degradation via autophagy-lysosome pathway in zebrafish.
PLAAT1 在斑马鱼中通过自噬-溶酶体途径促进 p53 降解。
  • DOI:
    10.1016/j.fsi.2022.05.001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xin Zhao;Wenji Huang;Jiahong Guo;N. Ji;Jianhua Feng;Yanjie Shi;Kangyong Chen;Jun Zou
  • 通讯作者:
    Jun Zou
Statics and dynamics of a viscous ligament drawn out of a pure-liquid bath
从纯液浴中拉出的粘性韧带的静力学和动力学
  • DOI:
    10.1017/jfm.2021.505
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaofeng Wei;Javier Rivero-Rodríguez;Jun Zou;Benoit Scheid
  • 通讯作者:
    Benoit Scheid
Integration of LTE 230 and LTE 1800 in Power Wireless Private Networks
LTE 230 和 LTE 1800 在电力无线专网中的集成
  • DOI:
    10.3390/fi11110221
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhengyang Ding;Weiwei Miao;Mingxuan Zhang;Wei Li;Rui Liu;Jun Zou;Chen Xu
  • 通讯作者:
    Chen Xu

Jun Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Zou', 18)}}的其他基金

Large-Scale Optical Ultrasound Transducer Arrays for High-Speed and High-Resolution 3D Acoustic Tomography
用于高速、高分辨率 3D 声学断层扫描的大型光学超声换能器阵列
  • 批准号:
    2330199
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Fast Spectrally-Encoded Photoacoustic Microscopy for Multi-Parameter Bioenergetic Characterization of Heterogeneous Cancer Cells
合作研究:快速光谱编码光声显微镜用于异质癌细胞的多参数生物能表征
  • 批准号:
    2036134
  • 财政年份:
    2021
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
  • 批准号:
    1809710
  • 财政年份:
    2018
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
EAGER: MEMS Co-Steered Optical and Acoustic Dual Modal Communication and Ranging Devices for Underwater Vehicles
EAGER:用于水下航行器的 MEMS 协同引导光学和声学双模通信和测距设备
  • 批准号:
    1748161
  • 财政年份:
    2017
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research/IDBR: High-Throughput Measurement of Oxygen Consumption Rates of Single Cells Using Wide-Field Optical-Resolution Photoacoustic Microscopy
合作研究/IDBR:使用宽视场光学分辨率光声显微镜高通量测量单细胞的耗氧率
  • 批准号:
    1255921
  • 财政年份:
    2013
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Continuing Grant
MEMS-Switched Acoustic Delay-Lines Microsystems for Advanced Ultrasonic Imaging Applications
用于高级超声成像应用的 MEMS 开关声学延迟线微系统
  • 批准号:
    1131758
  • 财政年份:
    2011
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Development of leucocyte cell lines for immunological research in teleost fish
用于硬骨鱼免疫学研究的白细胞系的开发
  • 批准号:
    G0800725/1
  • 财政年份:
    2009
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Research Grant

相似国自然基金

基于多尺度多模态脑网络的阿尔茨海默症病理进程研究
  • 批准号:
    62302044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多尺度视角下黄河流域人口就近城镇化空间格局与机制研究
  • 批准号:
    42371266
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
多尺度级串吸振超材料的设计与靶向能量转移规律研究
  • 批准号:
    12372021
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
PLA/PPC交替多层薄膜的多尺度结构设计及性能强化研究
  • 批准号:
    52373046
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非周期点阵结构应变梯度均匀化模型与多尺度分析方法研究
  • 批准号:
    12302078
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324580
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了