Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach

合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性

基本信息

  • 批准号:
    2148646
  • 负责人:
  • 金额:
    $ 40.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Materials, especially metals, can be deformed more easily when exposed to high frequency elastic waves. Such phenomenon is called acoustoplasticity and has been used in several applications, such as metal forming, extrusion, welding, flip-chip bonding, and ultrasonic additive manufacturing. Despite its widespread use, these processes are still at a “trial and error” stage due to the lack of a clear understanding of the underlying mechanisms. This award supports fundamental research to unravel the deformation processes that drive acoustoplasticity through a combined computational and experimental approach, from the atomistic up to the microstructural scale. The knowledge gained from this award can improve vibration/ultrasonic assisted manufacturing methods, especially ultrasonic additive manufacturing, which has the potential for on-demand, in-space manufacturing. This award will support cross-cutting research between mechanics, high performance computing, data science, material characterization, and testing. Student recruitment, including for summer undergraduate research opportunities, will focus on underrepresented minorities. Additionally, hands-on computational and experimental workshops will target K-12 school children and teachers.The mechanisms behind acoustoplasticity in metals are not fully understood because: (1) acoustic excitation occurs in the macroscale, but its effects can be spread over orders of magnitude in the spatio-temporal scale; (2) single-scale models smear out the mechanisms spread over multiple scales and cannot address the full complexity; and (3) probing the acoustic-affected dislocation plasticity is challenging due to the fast time scale of the events. This research will fill these knowledge gaps by combining multiscale simulations, time resolved nonlinear waves, and microscopy. The complex dynamics of plastic deformation under ultrasonic vibrations will be characterized through concurrent atomistic-continuum simulations. The in-situ, time-resolved experiments will be used to capture the microstructural evolution under ultrasonic vibrations, e.g., with the use of scanning electron microscopy and electron back scatter diffraction. Finally, a mechanism-based parameter will be calibrated to bridge the simulations and experiments across multiple spatio-temporal scales for a multiscale understanding of acoustoplasticity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料,尤其是金属,在暴露于高频弹性波时更容易变形,这种现象称为声塑性,并已用于金属成型、挤压、焊接、倒装芯片键合和超声波增材制造等多种应用中。尽管其广泛使用,但由于缺乏对潜在机制的清晰了解,这些过程仍处于“试错”阶段。该奖项支持揭示驱动变形过程的基础研究。通过计算组合和实验方法实现从原子到微观结构尺度的声塑性,从该奖项中获得的知识可以改进振动/超声波辅助制造方法,特别是超声波增材制造,它具有按需、空间内的潜力。该奖项将支持力学、高性能计算、数据科学、材料表征和测试之间的交叉研究,包括暑期本科生研究机会,此外,还将重点关注少数群体的实践计算和实践。实验研讨会将针对 K-12 学童和教师。金属声塑性背后的机制尚未完全了解,因为:(1) 声激发发生在宏观尺度,但其影响可以在时空尺度上传播多个数量级(2)单尺度模型掩盖了跨多个尺度的机制,无法解决全部复杂性;(3)由于事件的时间尺度很快,探测受声波影响的位错塑性具有挑战性。研究将通过结合多尺度模拟、时间分辨非线性波和显微镜来填补这些知识空白,将通过同时进行的原子连续模拟来表征超声振动下的复杂塑性变形动力学。捕获超声波振动下的微观结构演变,例如使用扫描电子显微镜和电子背散射衍射最后,将得到基于机制的参数。经过校准,可以在多个时空尺度上连接模拟和实验,以实现对声塑性的多尺度理解。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunil Kishore Chakrapani其他文献

Sunil Kishore Chakrapani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于场景理解和视觉推理的光电集成芯片表面缺陷检测方法研究
  • 批准号:
    52375499
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向长文本的机器阅读理解关键技术研究
  • 批准号:
    62306040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
  • 批准号:
    52302494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理解释的深度学习云对流参数化方案研究
  • 批准号:
    42305174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了