Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
基本信息
- 批准号:2148646
- 负责人:
- 金额:$ 40.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Materials, especially metals, can be deformed more easily when exposed to high frequency elastic waves. Such phenomenon is called acoustoplasticity and has been used in several applications, such as metal forming, extrusion, welding, flip-chip bonding, and ultrasonic additive manufacturing. Despite its widespread use, these processes are still at a “trial and error” stage due to the lack of a clear understanding of the underlying mechanisms. This award supports fundamental research to unravel the deformation processes that drive acoustoplasticity through a combined computational and experimental approach, from the atomistic up to the microstructural scale. The knowledge gained from this award can improve vibration/ultrasonic assisted manufacturing methods, especially ultrasonic additive manufacturing, which has the potential for on-demand, in-space manufacturing. This award will support cross-cutting research between mechanics, high performance computing, data science, material characterization, and testing. Student recruitment, including for summer undergraduate research opportunities, will focus on underrepresented minorities. Additionally, hands-on computational and experimental workshops will target K-12 school children and teachers.The mechanisms behind acoustoplasticity in metals are not fully understood because: (1) acoustic excitation occurs in the macroscale, but its effects can be spread over orders of magnitude in the spatio-temporal scale; (2) single-scale models smear out the mechanisms spread over multiple scales and cannot address the full complexity; and (3) probing the acoustic-affected dislocation plasticity is challenging due to the fast time scale of the events. This research will fill these knowledge gaps by combining multiscale simulations, time resolved nonlinear waves, and microscopy. The complex dynamics of plastic deformation under ultrasonic vibrations will be characterized through concurrent atomistic-continuum simulations. The in-situ, time-resolved experiments will be used to capture the microstructural evolution under ultrasonic vibrations, e.g., with the use of scanning electron microscopy and electron back scatter diffraction. Finally, a mechanism-based parameter will be calibrated to bridge the simulations and experiments across multiple spatio-temporal scales for a multiscale understanding of acoustoplasticity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当暴露于高频弹性波时,材料,尤其是金属,可以更容易变形。这种现象称为大声塑性性,已在多种应用中使用,例如金属形成,扩展,焊接,翻转芯片粘合和超声添加剂制造。尽管使用了宽度,但由于对基本机制缺乏清晰的了解,这些过程仍处于“反复试验”阶段。该奖项支持基础研究,以通过从原子体到微结构量表的组合计算和实验方法来揭示通过相结合的计算和实验方法来驱动声学的变形过程。从该奖项中获得的知识可以改善振动/超声辅助制造方法,尤其是超声添加剂制造,该方法有可能进行按需的空间内制造。该奖项将支持力学,高性能计算,数据科学,材料表征和测试之间的横切研究。学生招募,包括夏季本科研究机会,将集中于代表性不足的少数民族。其他,动手的计算和实验研讨会将针对K-12学童和教师。金属中声学地形的背后机制尚不完全理解,因为:(1)声学兴奋发生在宏观上,但其效果可以传播到空间量表中的数量级上; (2)单尺度模型涂抹了分布在多个尺度上的机制,无法解决全部复杂性; (3)由于事件的快速时间尺度,探测受声影响的脱位可塑性。这项研究将通过组合多个模拟,时间分辨的非线性波和显微镜来填补这些知识差距。在超声振动下塑性变形的复杂动力学将通过并发的原子 - 孔子模拟来表征。原位,时间分辨的实验将用于在超声振动下(例如,使用扫描电子显微镜和电子背部散射衍射)捕获显微结构的进化。最后,将对基于机制的参数进行校准,以弥合多个时空尺度上的模拟和实验,以对声学地形学有多尺度的了解。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunil Kishore Chakrapani其他文献
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes
- DOI:
10.1016/j.ultras.2013.10.011 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:
- 作者:
Sunil Kishore Chakrapani;Daniel Barnard;Vinay Dayal - 通讯作者:
Vinay Dayal
Sunil Kishore Chakrapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于场景理解的全景视频智能压缩关键技术研究
- 批准号:62371310
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
- 批准号:62306239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂场景下的视频内容增强与理解研究
- 批准号:62372036
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Continuing Grant