CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
基本信息
- 批准号:1845009
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: Information processing and communication are at the heart of many technologies that enable modern life. These technologies have experienced exponential growth over the past several decades, thanks to the aggressive scaling of electronic devices. Next-generation information technologies, however, cannot be supported by only scaling transistors, and will rely heavily on data centers and cloud computing to drive performance improvements. We are already experiencing this trend with the increased investment from large technology companies in these sectors. To support this architecture, we need to bring optical interconnect technology (i.e., fiber optics), which is the backbone of the modern internet, to shorter length scales. Going beyond classical computing and communication technologies, quantum mechanics presents an opportunity to realize a paradigm shift in information technology. All these technologies, however, require ultra-low power optoelectronic devices; the power requirement is almost four orders of magnitude lower than that of existing devices. In my research, I aim to create these devices using atomically thin materials integrated with silicon nitride photonic circuits. Specifically, we aim to develop an optical modulator and optical switch, that can change light transmission using minimal power. These devices will be fabricated using well-developed semiconductor manufacturing technology. Along with developing new technology, the proposal aims to incorporate a design-build-test module in existing lecture-based nanophotonics courses to provide hands-on experience to the next-generation knowledge workers in the field of integrated photonics.Technical Description: Ultra-low-power tunable and nonlinear optical devices hold the key for numerous optical technologies including optoelectronic information processing, communication, and photonic quantum simulations of strongly correlated materials. Currently, the power required to modulate the light transmission through photonic devices or to observe a nonlinear input-output response is too high. This power can be reduced by spatially confining the electronic and photonic wave functions to a nanometer-length scale for an extended period of time. Nanophotonic resonators integrated with emerging low-dimensional materials present an attractive platform to create ultra-low-power optoelectronic devices. To that end, this proposal aims to integrate van der Waals (vdW) materials (e.g., graphene or transition metal dichalcogenides) and their heterostructures with silicon nitride nano-resonators. The choice of silicon nitride is motivated by its large bandgap and compatibility with large-scale semiconductor manufacturing. The vdW materials are chosen for their unique quantum properties, large exciton binding energies, and atomic thinness that enable extremely small active volumes and unprecedented material compatibility; they can be transferred onto any substrate without requiring explicit lattice matching. Combining numerical simulation, device fabrication, and optical characterization, three research aims will be pursued: (i) develop an experiment-driven model for vdW material?cavity coupling; (ii) demonstrate optical nonlinearity at the few photon level in a coupled cavity array, and (iii) create an electro-optic modulator with attojoule electrical energy per switching. While the initial applications of these devices will be in ultra-low-power classical optical information science, the same platform can be used for developing quantum technologies, including quantum many-body simulations and quantum signal transduction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:信息处理和沟通是许多能够实现现代生活的技术的核心。由于电子设备的积极缩放,这些技术在过去几十年中经历了指数增长。但是,下一代信息技术不能仅通过缩放晶体管来支持,并且将严重依赖数据中心和云计算来推动性能改进。我们已经经历了这一趋势,这些领域的大型技术公司的投资增加了。为了支持这种体系结构,我们需要携带光学互连技术(即光纤),即现代互联网的骨干,以缩短长度尺度。量子力学超越了经典的计算和通信技术,为实现信息技术的范式转移提供了机会。但是,所有这些技术都需要超低功率光电设备。功率要求几乎比现有设备低四个数量级。在我的研究中,我旨在使用与氮化硅光子电路集成的原子薄材料来创建这些设备。具体而言,我们旨在开发光学调制器和光学开关,该开关可以使用最小的功率来改变光线传输。这些设备将使用发达的半导体制造技术制造。随着开发新技术的发展,该提案旨在将设计建造测试模块纳入现有的基于讲座的纳米光子学课程中,以在集成光子学领域为下一代知识工作者提供动手体验。相关材料。当前,通过光子设备调节光传输或观察非线性输入输出响应所需的功率太高。可以通过将电子和光子波函数限制在长时间的纳米长度尺度上来降低这种功率。与新兴的低维材料集成的纳米光谐振器具有一个有吸引力的平台,可以创建超低功率光电设备。为此,该提案旨在将范德华(VDW)材料(例如石墨烯或过渡金属二核苷)及其异质结构与硝酸硅纳米透明剂相结合。硝化硅的选择是由其较大的带隙和与大规模半导体制造的兼容性的动机。 VDW材料是用于其独特的量子特性,大激子结合能和原子薄度的选择,从而使极小的活性体积和前所未有的材料兼容。可以将它们转移到任何基材上,而无需显式晶格匹配。结合了数值模拟,设备制造和光学表征,将追求三个研究目标:(i)开发用于VDW材料的实验驱动模型?空腔耦合; (ii)在耦合的腔阵列中表明在几个光子水平上的光学非线性,(iii)创建一个带有每个开关的attojoule电能的电气调节器。尽管这些设备的最初应用将用于超低功率的经典光学信息科学,但可以将同一平台用于开发量子技术,包括量子多体型模拟和量子信号转换。这项奖项反映了NSF的法定任务,并通过该基金会的知识分子优点和广泛的影响来评估NSF的法定任务,并被认为是值得的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-precision local transfer of van der Waals materials on nanophotonic structures
- DOI:10.1364/ome.383255
- 发表时间:2019-07
- 期刊:
- 影响因子:2.8
- 作者:D. Rosser;Taylor Fryett;Abhi Saxena;A. Ryou;A. Majumdar
- 通讯作者:D. Rosser;Taylor Fryett;Abhi Saxena;A. Ryou;A. Majumdar
Visible Wavelength Flatband in a Gallium Phosphide Metasurface
- DOI:10.1021/acsphotonics.3c00175
- 发表时间:2023-02
- 期刊:
- 影响因子:7
- 作者:Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
- 通讯作者:Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
Dispersive coupling between MoSe 2 and an integrated zero-dimensional nanocavity
MoSe 2 与集成零维纳米腔之间的色散耦合
- DOI:10.1364/ome.443536
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Rosser, David;Gerace, Dario;Chen, Yueyang;Liu, Yifan;Whitehead, James;Ryou, Albert;Andreani, Lucio C.;Majumdar, Arka
- 通讯作者:Majumdar, Arka
Optimal condition to probe strong coupling of two-dimensional excitons and zero-dimensional cavity modes
探测二维激子与零维腔模强耦合的最佳条件
- DOI:10.1103/physrevb.104.235436
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Rosser, David;Gerace, Dario;Andreani, Lucio C.;Majumdar, Arka
- 通讯作者:Majumdar, Arka
Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides
过渡金属二硫化物异质双层中光子晶体腔与层间激子的耦合
- DOI:10.1088/2053-1583/ab597d
- 发表时间:2020
- 期刊:
- 影响因子:5.5
- 作者:Rivera, Pasqual;Fryett, Taylor K;Chen, Yueyang;Liu, Chang-Hua;Ray, Essance;Hatami, Fariba;Yan, Jiaqiang;Mandrus, David;Yao, Wang;Majumdar, Arka
- 通讯作者:Majumdar, Arka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arka Majumdar其他文献
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arka Majumdar - 通讯作者:
Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
- DOI:
10.1364/oe.19.007530 - 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković - 通讯作者:
J. Vučković
Compressed Meta-Optical Encoder for Image Classification
用于图像分类的压缩元光学编码器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Wirth;Jinlin Xiang;Minho Choi;Johannes E. Froch;Luocheng Huang;S. Colburn;Eli Shlizerman;Arka Majumdar - 通讯作者:
Arka Majumdar
Accelerating discovery of tunable optical materials (ATOM)
加速可调谐光学材料 (ATOM) 的发现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Trish Veeder;Arash Dehzangi;Shriram Ramanathan;Mikhail Kats;Nanfang Yu;Juejun Hu;Christopher Roberts;Mark Polking;Kevin Tibbetts;Arka Majumdar;Marina S. Leite;H. Homayoun;J. Munday;K. K. Son - 通讯作者:
K. K. Son
Wide Field of View Large Aperture Meta-Doublet Eyepiece
宽视场大口径超双目镜
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Wirth;Johannes E. Froch;Fan Yang;Louis Martin;Hualiang Zhang;Quentin T. Tanguy;Zhihao Zhou;Luocheng Huang;Demis D. John;Biljana Stamenic;Juejun Hu;Tian Gu;Arka Majumdar - 通讯作者:
Arka Majumdar
Arka Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arka Majumdar', 18)}}的其他基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344659 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
- 批准号:
2223495 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
- 批准号:
2103673 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
- 批准号:
2120774 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
- 批准号:
2003509 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
- 批准号:
1936100 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
- 批准号:
1836500 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
- 批准号:
1708579 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Van der Waals 异质结中层间耦合作用的同步辐射研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:联合基金项目
二维van der Waals铁磁性绝缘材料的高压研究
- 批准号:11904416
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于黑磷烯van der Waals异质结的GHz带宽光通讯波段探测器研究
- 批准号:61704082
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于石墨烯衬底van der Waals薄膜气-液-固外延生长的高质量氧化锌制备
- 批准号:61604062
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
具脉冲影响的Van der Pol方程的复杂动力学行为研究
- 批准号:11626145
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
- 批准号:
2340773 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Design and synthesis of functional van der Waals magnets
职业:功能性范德华磁体的设计与合成
- 批准号:
2338229 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER:Electrically Tunable van der Waals Optical Nanoantennas Photodetectors and Metasurfaces
职业:电可调谐范德华光学纳米天线光电探测器和超表面
- 批准号:
2340751 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant