CAREER: Automated and Efficient Machine Learning as a Service

职业:自动化高效的机器学习即服务

基本信息

  • 批准号:
    2305491
  • 负责人:
  • 金额:
    $ 51.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Machine-Learning-as-a-Service (MLaaS) is an emerging computing paradigm that provides optimized execution of machine learning tasks, such as model design, model training, and model serving, on cloud infrastructure. Explosive growth in model complexity and data size along with the surging demands of MLaaS is already resulting in substantial increases in computational resource and energy requirements. Unfortunately, existing MLaaS systems have poor resource management and limited support for user specified performance and cost requirements, exacerbating waste in computing resources and energy. This project aims to utilize the unique features of MLaaS to design efficient, automated, and user-centric MLaaS systems. This approach will significantly reduce resource waste and shorten the model design cycles through a variety of novel optimization approaches and by eliminating candidate models that fail to meet model serving latency and target accuracy. To support complete MLaaS workflow, this project will also develop MLaaS model serving methodologies that can meet service level latency requirements with minimum resource consumption using intelligent autoscaling.This project has the potential to tremendously reduce the resource and energy consumptions as well as the carbon footprint associated with the fast-growing societal demands in machine learning and cloud computing. Important insights and technologies will be produced targeting resource management and energy saving of the next-generation machine learning systems and cloud infrastructure. The findings of this project will also contribute to related fields of parallel and distributed systems, performance evaluation and optimization, and green computing. This project will carry out substantial integrated education activities including new course and online education development, integration of industry feedback in education. Additionally, the work will impact undergraduate and graduate students by training them in the art of system optimization combined with the latest machine learning domain knowledge while combining outreach and engagement of students from underrepresented groups and especially women.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习即服务 (MLaaS) 是一种新兴的计算范例,可在云基础设施上提供机器学习任务的优化执行,例如模型设计、模型训练和模型服务。模型复杂性和数据规模的爆炸式增长以及 MLaaS 需求的激增已经导致计算资源和能源需求大幅增加。不幸的是,现有的MLaaS系统资源管理较差,对用户指定的性能和成本要求的支持有限,加剧了计算资源和能源的浪费。该项目旨在利用 MLaaS 的独特功能来设计高效、自动化且以用户为中心的 MLaaS 系统。这种方法将通过各种新颖的优化方法以及消除无法满足模型服务延迟和目标精度的候选模型,显着减少资源浪费并缩短模型设计周期。为了支持完整的 MLaaS 工作流程,该项目还将开发 MLaaS 模型服务方法,该方法可以使用智能自动扩展以最小的资源消耗满足服务级别延迟要求。该项目有可能大大减少资源和能源消耗以及相关的碳足迹随着机器学习和云计算快速增长的社会需求。将产生针对下一代机器学习系统和云基础设施的资源管理和节能的重要见解和技术。该项目的研究成果也将为并行与分布式系统、性能评估与优化、绿色计算等相关领域做出贡献。该项目将开展实质性的融合教育活动,包括新课程和在线教育开发、行业反馈融入教育等。 此外,这项工作还将对本科生和研究生产生影响,对他们进行系统优化艺术与最新机器学习领域知识的培训,同时结合来自代表性不足群体(尤其是女性)的学生的外展和参与。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noctua: Towards Practical and Automated Fine-grained Consistency Analysis
Noctua:迈向实用且自动化的细粒度一致性分析
SciLance: Mitigate Load Imbalance for Parallel Scientific Applications in Cloud Environments
SciLance:缓解云环境中并行科学应用程序的负载不平衡
AI augmented Edge and Fog computing: Trends and challenges
人工智能增强边缘和雾计算:趋势和挑战
  • DOI:
    10.1016/j.jnca.2023.103648
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Tuli, Shreshth;Mirhakimi, Fatemeh;Pallewatta, Samodha;Zawad, Syed;Casale, Giuliano;Javadi, Bahman;Yan, Feng;Buyya, Rajkumar;Jennings, Nicholas R.
  • 通讯作者:
    Jennings, Nicholas R.
MalleTrain: Deep Neural Networks Training on Unfillable Supercomputer Nodes
MalleTrain:在不可填充的超级计算机节点上进行深度神经网络训练
A Generic, High-Performance, Compression-Aware Framework for Data Parallel DNN Training
用于数据并行 DNN 训练的通用、高性能、压缩感知框架
  • DOI:
    10.1109/tpds.2023.3266246
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Wu, Hao;Wang, Shiyi;Bai, Youhui;Li, Cheng;Zhou, Quan;Yi, Jun;Yan, Feng;Chen, Ruichuan;Xu, Yinlong
  • 通讯作者:
    Xu, Yinlong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Yan其他文献

Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.
山羊布鲁氏菌外膜蛋白omp31及其单克隆抗体的免疫学特性
Design and implementation of flow-based programmable nodes in software-defined sensor networks
软件定义传感器网络中基于流的可编程节点的设计与实现
Long-term implications of municipal solid waste (MSW) classification on emissions of PCDD/Fs and other pollutants: Five-year field study in a full-scale MSW incinerator in southern China
城市固体废物 (MSW) 分类对 PCDD/F 和其他污染物排放的长期影响:对中国南方大型城市固体废物焚烧炉进行的五年现场研究
  • DOI:
    10.1016/j.jclepro.2024.140848
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Pengju Wang;Feng Xie;Feng Yan;Xuehua Shen;Heijin Chen;Rigang Zhong;Hao Wu;Zuo
  • 通讯作者:
    Zuo
Lensless shadow microscopy-based shortcut analysis strategy for fast quantification of microplastic fibers released to water.
基于无透镜阴影显微镜的快捷分析策略,用于快速定量释放到水中的微塑料纤维。
  • DOI:
    10.1016/j.watres.2024.121758
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Yu Su;Chenqi Yang;Yao Peng;Cheng Yang;Yanhua Wang;Yong Wang;Feng Yan;Baoshan Xing;Rong Ji
  • 通讯作者:
    Rong Ji
A Cooperative Resource Optimization Framework for Blockchain-based Vehicular Networks with MEC
基于区块链的 MEC 车载网络协作资源优化框架

Feng Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Yan', 18)}}的其他基金

CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
  • 批准号:
    2413632
  • 财政年份:
    2024
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Photomechanical Behavior in Photovoltaic Semiconductors
合作研究:光伏半导体中的光机械行为
  • 批准号:
    2330728
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
  • 批准号:
    2329871
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226918
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
  • 批准号:
    2330738
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2323766
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
  • 批准号:
    2127640
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2048044
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant
I-Corps: Printable Carbon-based Perovskite Thin Film Solar Cells
I-Corps:可印刷碳基钙钛矿薄膜太阳能电池
  • 批准号:
    2039883
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
  • 批准号:
    1944374
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于多模型-自动化微流控芯片技术的三代EGFR-TKI耐药后个体化药物高效筛选平台的构建及应用
  • 批准号:
    82304435
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高效能光子DNN加速器的系统架构自动化设计方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效的自动化图神经网络架构设计方法与关键技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据检测与状态预测的5G工业自动化系统网络资源高效管控研究
  • 批准号:
    62073039
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
面向超大规模FPGA的高效并行布线方法研究
  • 批准号:
    61802446
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Safe and efficient eco-driving using connected and automated vehicles
使用联网和自动驾驶车辆实现安全高效的生态驾驶
  • 批准号:
    DP240102189
  • 财政年份:
    2024
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Discovery Projects
Promoting Mental Health of Teachers and Caregivers using a Personalized mHealth Toolkit in Uganda
在乌干达使用个性化移动医疗工具包促进教师和护理人员的心理健康
  • 批准号:
    10739227
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
  • 批准号:
    10738697
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
PFI-TT: Development of an Automated Cell Culturing Platform for Highly Efficient and Reliable Drug Testing in Physiologically Representative Disease Models
PFI-TT:开发自动化细胞培养平台,在生理代表性疾病模型中进行高效可靠的药物测试
  • 批准号:
    2141029
  • 财政年份:
    2022
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
  • 批准号:
    2748823
  • 财政年份:
    2022
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了