GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations

GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗

基本信息

  • 批准号:
    2120774
  • 负责人:
  • 金额:
    $ 360万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Angioscopes are ultrathin and flexible forward-viewing optical imaging devices that guide clinical procedures in the cardiovascular system. Cardiovascular disease, led by heart attack and stroke, are the leading cause of death in the US and globally. Due to basic limitations of conventional optics, these angioscopes are currently made with a bundle of over a thousand glass optical fibers, a 50-year-old technology that provides resolution that is too low and a stiffness that is too high for important potential applications. To reach clinically significant targets in the brain and heart, the angioscope needs to be more flexible and the rigid tip length must be reduced to only a few times the width of a human hair. Such an incredibly agile angioscope in the hands of a neurosurgeon could snake its way deep into the brain to remove blood clots, which can help a stroke patient. Further, a cardiologist could use this device to pass vessel-clogging plaque deposits and accurately apply a range of therapies in coronary arteries in response to heart attacks. The potential to reduce morbidity and mortality from stroke and heart attacks could benefit many individuals. This research project at the interface between nanophotonics and bioengineering aims to develop the technology that could enable such ultra-miniature agile angioscopes by using emerging optical hardware and artificial intelligence-enabled software image reconstruction. The project brings together scientists and engineers from academia and startup companies with medical professionals to solve this high-impact problem. Ultrathin and flexible forward-viewing endoscopes, also known as angioscopes, are of critical importance for treating many cardiovascular diseases, including stroke and heart attacks, both of which are among the leading causes of death in the United States. Current medical instruments based on traditional refractive optics are too bulky to be used deep in the brain and in diseased coronary arteries. To reach locations of stroke in the brain, the rigid tip length in an angioscope must be reduced to sub-millimeter length scale. Emerging nanophotonics and metamaterial technology have the potential to achieve such clinically significant miniaturization. Meta-optics provide many degrees of freedom to design completely new types of optical elements. Multi-scale electromagnetic simulation coupled with optimization techniques have already enabled design of a meta-optic combining functionalities of multiple optical elements. In conjunction with a computational backend, meta-optics that also capture aberration-free images in full color should be possible. Combining computational inverse methods based on machine learning, semiconductor nanomanufacturing, and techniques from medical instrumentation, including advanced saline flushing, this project aims to create a micro-imaging system with 250-micron aperture and 100-micron rigid tip thickness, which will capture full-color images in a 100-degree field of view with cellular resolution. Along with academic researchers from basic science and engineering disciplines, this project includes partners associated with startups commercializing meta-optics and endoscopes as well as minimally invasive, interventional surgeons specializing in cardiovascular diseases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
血管镜是超薄且灵活的前视光学成像设备,可指导心血管系统的临床手术。以心脏病和中风为首的心血管疾病是美国和全球的主要原因。由于传统光学器件的基本限制,这些血管镜目前由一束超过 1000 根玻璃光纤制成,这是一项已有 50 年历史的技术,其分辨率过低,刚度过高,无法满足重要的潜在应用需求。为了到达大脑和心脏中具有临床意义的目标,血管镜需要更加灵活,并且刚性尖端长度必须减少到人类头发宽度的几倍。神经外科医生手中如此灵活的血管镜可以蜿蜒深入大脑以清除血凝块,这可以帮助中风患者。此外,心脏病专家可以使用该设备清除血管堵塞的斑块沉积物,并准确地在冠状动脉中应用一系列疗法来应对心脏病发作。降低中风和心脏病发病率和死亡率的潜力可能会使许多人受益。该研究项目位于纳米光子学和生物工程之间,旨在开发一种技术,通过使用新兴的光学硬件和人工智能软件图像重建来实现这种超小型敏捷血管镜。该项目汇集了来自学术界和初创公司的科学家和工程师以及医疗专业人员,以解决这一影响深远的问题。超薄灵活的前视内窥镜(也称为血管镜)对于治疗许多心血管疾病至关重要,包括中风和心脏病,这两种疾病都是美国的主要原因之一。目前基于传统折射光学器件的医疗仪器体积太大,无法在大脑深处和患病的冠状动脉中使用。为了到达大脑中的中风部位,血管镜的刚性尖端长度必须减少到亚毫米长度。新兴的纳米光子学和超材料技术有潜力实现这种具有临床意义的小型化。元光学为设计全新类型的光学元件提供了许多自由度。多尺度电磁仿真与优化技术相结合已经能够设计出结合多个光学元件功能的元光学。与计算后端相结合,元光学也可以捕获全彩的无像差图像。该项目结合基于机器学习、半导体纳米制造和医疗仪器技术(包括先进的盐水冲洗)的计算逆方法,旨在创建一个具有 250 微米孔径和 100 微米刚性尖端厚度的微成像系统,该系统将捕获完整的图像。 - 100 度视野中具有细胞分辨率的彩色图像。该项目除来自基础科学和工程学科的学术研究人员外,还包括与元光学和内窥镜商业化的初创公司以及专门从事心血管疾病的微创介入外科医生相关的合作伙伴。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dual Band Computational Infrared Spectroscopy via Large Aperture Meta-Optics
  • DOI:
    10.1021/acsphotonics.2c01017
  • 发表时间:
    2022-09-19
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Froch, Johannes E.;Colburn, Shane;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Partially Coherent Double-Phase Holography in Visible Wavelength Using Meta-Optics
  • DOI:
    10.1021/acsphotonics.2c02016
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Saswata Mukherjee;Quentin A. A. Tanguy-Quentin-A.-A.-Tanguy-15704552;Johannes E. Fröch;A. Shanker;K. Böhringer;S. Brunton;A. Majumdar
  • 通讯作者:
    Saswata Mukherjee;Quentin A. A. Tanguy-Quentin-A.-A.-Tanguy-15704552;Johannes E. Fröch;A. Shanker;K. Böhringer;S. Brunton;A. Majumdar
Software-defined meta-optics
  • DOI:
    10.1063/5.0164387
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Romil Audhkhasi;Johannes E. Fröch;A. Zhan;S. Colburn;A. Majumdar
  • 通讯作者:
    Romil Audhkhasi;Johannes E. Fröch;A. Zhan;S. Colburn;A. Majumdar
Large area optimization of meta-lens via data-free machine learning
  • DOI:
    10.1038/s44172-023-00107-x
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Zhelyeznyakov;Johannes E. Fröch;A. Wirth-Singh;Jae-Eok Noh;J. Rho;Steve Brunton;A. Majumdar
  • 通讯作者:
    M. Zhelyeznyakov;Johannes E. Fröch;A. Wirth-Singh;Jae-Eok Noh;J. Rho;Steve Brunton;A. Majumdar
Inverse‐Designed Meta‐Optics with Spectral‐Spatial Engineered Response to Mimic Color Perception
  • DOI:
    10.1002/adom.202200734
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Christopher Munley;Wen-Hai Ma;Johannes E. Fröch;Quentin A. A. Tanguy-Quentin-A.-A.-Tanguy-15704552;E. Bayati;K. Böhringer;Zin Lin;R. Pestourie;Steven G. Johnson;A. Majumdar
  • 通讯作者:
    Christopher Munley;Wen-Hai Ma;Johannes E. Fröch;Quentin A. A. Tanguy-Quentin-A.-A.-Tanguy-15704552;E. Bayati;K. Böhringer;Zin Lin;R. Pestourie;Steven G. Johnson;A. Majumdar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković
Compressed Meta-Optical Encoder for Image Classification
用于图像分类的压缩元光学编码器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Wirth;Jinlin Xiang;Minho Choi;Johannes E. Froch;Luocheng Huang;S. Colburn;Eli Shlizerman;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Wide Field of View Large Aperture Meta-Doublet Eyepiece
宽视场大口径超双目镜
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Wirth;Johannes E. Froch;Fan Yang;Louis Martin;Hualiang Zhang;Quentin T. Tanguy;Zhihao Zhou;Luocheng Huang;Demis D. John;Biljana Stamenic;Juejun Hu;Tian Gu;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Accelerating discovery of tunable optical materials (ATOM)
加速可调谐光学材料 (ATOM) 的发现
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trish Veeder;Arash Dehzangi;Shriram Ramanathan;Mikhail Kats;Nanfang Yu;Juejun Hu;Christopher Roberts;Mark Polking;Kevin Tibbetts;Arka Majumdar;Marina S. Leite;H. Homayoun;J. Munday;K. K. Son
  • 通讯作者:
    K. K. Son

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 360万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 360万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 360万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 360万
  • 项目类别:
    Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
  • 批准号:
    1836500
  • 财政年份:
    2018
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 360万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于半导体表面等离激元增强的光学波导探针及其传感机理研究
  • 批准号:
    12374287
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
有机二元共晶供受体间相互作用及非线性光学响应机制的理论研究
  • 批准号:
    12304283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
类金刚石型四元磷属化物长波红外非线性光学晶体的探索
  • 批准号:
    22305174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA折纸术指导的等离激元螺旋超组装与手性光学性质研究
  • 批准号:
    22302227
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

分子内励起エネルギー移動を活用した高活性な光化学的二酸化炭素還元触媒の開発
利用分子内激发能量转移开发高活性光化学二氧化碳还原催化剂
  • 批准号:
    24K08453
  • 财政年份:
    2024
  • 资助金额:
    $ 360万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
孤立LUMOの元素配位による狭ギャップ化の学理確立と革新的近赤外発光材料創出
建立通过孤立LUMO的元素协调来缩小差距的原理并创建创新的近红外发射材料
  • 批准号:
    24K01570
  • 财政年份:
    2024
  • 资助金额:
    $ 360万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
超分子ポルフィリンを光増感剤とした光化学的二酸化炭素還元反応の革新
使用超分子卟啉作为光敏剂的光化学二氧化碳还原反应的创新
  • 批准号:
    23K23453
  • 财政年份:
    2024
  • 资助金额:
    $ 360万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
異方性量子ドット三次元超格子の化学合成と協奏的光学特性の開拓
各向异性量子点三维超晶格的化学合成及其协同光学特性的发展
  • 批准号:
    23K26495
  • 财政年份:
    2024
  • 资助金额:
    $ 360万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Digital photonics exploiting optical nonlinearities of low-dimensional nano-materials
利用低维纳米材料光学非线性的数字光子学
  • 批准号:
    23H00174
  • 财政年份:
    2023
  • 资助金额:
    $ 360万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了