QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities

QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟

基本信息

  • 批准号:
    1836500
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Quantum technologies can revolutionize modern information systems by enabling faster computing and secured communication. Such technologies can be realized by exploiting the quantum nature of light, namely, photons. Unfortunately, photons do not interact with each other on their own, which prevents their direct application for quantum information processing. With support from the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Professors Arka Majumdar and Brandi Cossairt from the University of Washington are designing nanoscale optical structures that can store light for a long time while simultaneously confining it to a small volume. It is like focusing sun-light with a magnifying glass, but on the nanometer scale, the effect happens at a single photon level. Integrating nanoparticles with these optical nanostructures leads to a strong interaction between the photons. When photons are made to influence one another, they can then be used to distribute quantum information in a variety of useful ways. Discoveries from this project are advancing our understanding of how light interacts with matter, as well as leading to new, one-of-a-kind platforms for quantum technologies. Furthermore, the project is providing training and education in quantum technologies for graduate, undergraduate and high school students, with a strong emphasis on including women and students from underrepresented minorities groups. Nano-optical resonators can enhance the light-matter interaction via spatial and temporal confinement of light. The integration of a single quantum dot with such a resonator can lead to the strong coupling regime, where individual photons repel each other in an effect known as photon blockade. Such strong interactions are necessary for simulating the complicated behavior of electrons in real materials and other strongly correlated quantum many-body systems. However, deterministic positioning of single quantum dots is a very difficult task, and to date remains unsolved. To address this problem, the team is using solution-processed colloidal quantum dots in conjunction with lithographically defined windows on each nano-resonator. Combining numerical simulations, new synthesis chemistry, and optical characterization, three research thrusts are pursued: (i) Synthesis of quantum dots with large physical size; (ii) Size-selective integration of quantum dots with nano-resonators and measurement of quantum optical properties; (iii) Optical spectroscopy and photon correlation measurements in a nonlinear cavity array. The proposed research is built upon the PI's prior work on solution processed quantum dots, cavity quantum electrodynamics, and single photon nonlinear optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术可以通过更快的计算和安全通信来彻底改变现代信息系统。可以通过利用光子的量子性质来实现此类技术。不幸的是,光子不会自行相互作用,这阻止了他们直接应用量子信息处理。在化学系中的大分子,超分子和纳米化学计划的支持下,华盛顿大学的Arka Majumdar教授和Brandi Cossairt教授正在设计纳米级光学结构,这些光学结构可以长期存储光线,同时将其同时限制在少量的体积中。就像用放大镜将日光照射到光线,但在纳米尺度上,效果发生在单个光子水平上。将纳米颗粒与这些光学纳米结构相结合会导致光子之间的强烈相互作用。当使光子相互影响时,可以使用各种有用的方式来分发量子信息。这个项目的发现正在促进我们对光线如何与物质相互作用的理解,并为量子技术提供新的,独一无二的平台。此外,该项目正在为研究生,本科和高中生提供量子技术的培训和教育,并非常着重于包括代表性不足少数群体的妇女和学生。纳米光谐振器可以通过光的空间和时间限制来增强光 - 物质的相互作用。单个量子点与这种谐振器的整合可以导致强耦合方案,在这种耦合方面,单个光子以称为光子阻滞的效果相互排斥。这种强大的相互作用对于模拟真实材料和其他密切相关的量子多体系统中电子的复杂行为是必要的。但是,单个量子点的确定性定位是一项非常困难的任务,迄今为止仍未解决。为了解决这个问题,该团队正在使用解决方案处理的胶体量子点以及每个纳米谐振器上的光刻定义的窗口。结合了数值模拟,新的合成化学和光学表征,提出了三个研究推力:(i)合成物理大小较大的量子点; (ii)量子点与纳米谐振器的尺寸选择性整合,并测量量子光学特性; (iii)非线性腔阵列中的光谱和光子相关测量。拟议的研究基于PI先前在解决方案处理的量子点,腔量子电动力学和单个光子非线性光学方面的工作。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的审查标准通过评估来进行评估的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Indistinguishability of Single Photons from Colloidal Quantum Dots Using Nanocavities
  • DOI:
    10.1021/acsphotonics.9b01481
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Saxena, Abhi;Chen, Yueyang;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange
  • DOI:
    10.1021/acs.chemmater.0c01407
  • 发表时间:
    2020-06-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Enright, Michael J.;Dou, Florence Y.;Cossairt, Brandi M.
  • 通讯作者:
    Cossairt, Brandi M.
Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals
  • DOI:
    10.1364/oe.27.018673
  • 发表时间:
    2019-06-24
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Fong, Chee Fai;Yin, Yin;Xiong, Qihua
  • 通讯作者:
    Xiong, Qihua
Nonvolatile Rewritable Photomemory Arrays Based on Reversible Phase‐Change Perovskite for Optical Information Storage
  • DOI:
    10.1002/adom.201900558
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Chen Zou;Jiajiu Zheng;Cheng Chang;A. Majumdar;Lih Y. Lin
  • 通讯作者:
    Chen Zou;Jiajiu Zheng;Cheng Chang;A. Majumdar;Lih Y. Lin
Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities
  • DOI:
    10.1021/acs.nanolett.8b02764
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Chen, Yueyang;Ryou, Albert;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković
Compressed Meta-Optical Encoder for Image Classification
用于图像分类的压缩元光学编码器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Wirth;Jinlin Xiang;Minho Choi;Johannes E. Froch;Luocheng Huang;S. Colburn;Eli Shlizerman;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Accelerating discovery of tunable optical materials (ATOM)
加速可调谐光学材料 (ATOM) 的发现
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trish Veeder;Arash Dehzangi;Shriram Ramanathan;Mikhail Kats;Nanfang Yu;Juejun Hu;Christopher Roberts;Mark Polking;Kevin Tibbetts;Arka Majumdar;Marina S. Leite;H. Homayoun;J. Munday;K. K. Son
  • 通讯作者:
    K. K. Son
Wide Field of View Large Aperture Meta-Doublet Eyepiece
宽视场大口径超双目镜
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Wirth;Johannes E. Froch;Fan Yang;Louis Martin;Hualiang Zhang;Quentin T. Tanguy;Zhihao Zhou;Luocheng Huang;Demis D. John;Biljana Stamenic;Juejun Hu;Tian Gu;Arka Majumdar
  • 通讯作者:
    Arka Majumdar

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836080
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
  • 批准号:
    1836482
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
  • 批准号:
    1836506
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: New Chemical Reactivity Enabled by Cavity Quantum Electrodynamics
QLC:EAGER:腔量子电动力学实现的新化学反应性
  • 批准号:
    1836546
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836075
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了