CAREER: Quasilinear Dispersive Evolutions in Fluid Dynamics

职业:流体动力学中的拟线性色散演化

基本信息

  • 批准号:
    1845037
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Nonlinear dispersive equations model physical phenomena arising in fluid dynamics (oceanography), quantum mechanics, plasma physics, nonlinear optics, all the way to general relativity. The purpose of this project is to improve the mathematical and scientific understanding of those equations via (i) concrete research projects aimed at studying the long-time behavior of solutions to such equations, and (ii) an educational component aimed at introducing such problems to a new and diverse generation of mathematicians. A primary focus of the principal investigator will be the analysis of the two-dimensional water wave equations, which govern the evolution of a free fluid surface, or of the interface between two fluids. The goal is to provide a better description of both the local dynamics (e.g. low regularity solutions and formation of singularities) and of global dynamics in fluid flows. Here, by singularities in free boundary problems, the principal investigator means evolutions where the interface loses smoothness, possibly forming a corner-like singularity followed by "wave breaking''. Such a behavior is exhibited in many physically important phenomena, like turbulence in ocean waves, tsunami formation, just to mention a few. While this wave breaking is easy to observe and has very strong manifestations in nature, its scientific understanding is rather poor, and the mathematical justification of the phenomena based on the constitutive equations is rather difficult and is fully open at this time. This project aims to tackle a selection of key open problems related to singularity formation and to long-time properties of solutions to several classes of dispersive and hyperbolic equations that arise from a physical or geometric context, largely motivated by fluid dynamics. The project includes an educational component aimed at raising the interest of a younger generation of researchers in those fundamental problems through workshops, seminars, REU projects, etc.One of the main goals of the project is to understand the long-time behavior of solutions of the water waves. This includes lifespan estimates as well as global in time dynamics and scattering properties, where possible. From this perspective there are two key properties that play a role: one is the "dispersive decay'', and the other is the ``resonance analysis''. Some of the key tools developed by the PI and collaborators (the "quasilinear modified energy method'', and the "testing with wave packets method'') will contribute to a better understanding of the proposed problems, but nevertheless, improvements of the existing methods and the need to develop new and robust techniques remain essential in order to describe, for instance, the singularity formation mechanism. The quasilinear nature of these equations plays a crucial role in the difficulty associated with the analysis of the long- time behavior and properties of the solutions. Water waves and related models are effective equations for the ocean dynamics that are derived in the physics literature from heuristic considerations and have very important implications on the long-time behavior of dispersive partial differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性分散方程模型在流体动力学(海洋学),量子力学,血浆物理学,非线性光学元件中产生的物理现象,一直到一般相对论。该项目的目的是通过(i)旨在研究解决方案的长期行为的具体研究项目来改善对这些方程式的数学和科学理解,以及(ii)旨在将这些问题引入新一代数学家的教育成分。主要研究者的主要重点是分析二维水波方程,该方程控制了自由流体表面的演变或两个流体之间的界面。目的是更好地描述局部动力学(例如低规律性解决方案和奇异性的形成)和流体流动中全球动力学。在这里,通过自由边界问题的奇点,主要研究者意味着界面失去光滑度,可能形成类似角落的奇点,然后是“波浪破裂”。在许多物理上重要的现象中表现出这种行为,例如在海浪中的湍流,像海浪中的湍流一样,可以轻松地观察到少数人的自然风险。基于本构方程的现象是相当困难的,目前是完全开放的。通过研讨会,研讨会,REU项目等的根本问题。项目的主要目标之一是了解水浪解决方案的长期行为。这包括寿命估计以及时间动态和散射属性的全局。 From this perspective there are two key properties that play a role: one is the "dispersive decay'', and the other is the ``resonance analysis''. Some of the key tools developed by the PI and collaborators (the "quasilinear modified energy method'', and the "testing with wave packets method'') will contribute to a better understanding of the proposed problems, but nevertheless, improvements of the existing methods and the need to develop new and强大的技术仍然必须描述这些方程式的奇异性形成机制。奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准评估值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Morawetz Inequality for Gravity-Capillary Water Waves at Low Bond Number
低键数重力毛细管水波的Morawetz不等式
  • DOI:
    10.1007/s42286-020-00044-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alazard, Thomas;Ifrim, Mihaela;Tataru, Daniel
  • 通讯作者:
    Tataru, Daniel
Local well-posedness for quasi-linear problems: A primer
Two-dimensional gravity waves at low regularity II: Global solutions
低规律性二维重力波 II:全局解决方案
  • DOI:
    10.4171/aihpc/21
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ai, Albert;Ifrim, Mihaela;Tataru, Daniel
  • 通讯作者:
    Tataru, Daniel
No solitary waves in 2D gravity and capillary waves in deep water
二维重力中没有孤立波,深水中没有毛细波
  • DOI:
    10.1088/1361-6544/ab95ad
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Ifrim, Mihaela;Tataru, Daniel
  • 通讯作者:
    Tataru, Daniel
The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity
具有恒定涡度的二维重力水波的 Benjamin-Ono 近似
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ifrim, Mihaela;Rowan, James;Tataru, Daniel;Wan, Lizhe
  • 通讯作者:
    Wan, Lizhe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihaela Ifrim其他文献

Mihaela Ifrim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihaela Ifrim', 18)}}的其他基金

Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分数阶标准线性体模型的纺织复合材料多尺度低周疲劳渐进损伤机理研究
  • 批准号:
    52075526
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
托卡马克装置电阻壁模反馈控制的准线性数值研究
  • 批准号:
    11805054
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
精准线性跳频工作模式的高重频、窄线宽中红外激光光源研究
  • 批准号:
    61875219
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
地球磁层准线性共振波粒相互作用的热等离子体效应研究
  • 批准号:
    41474141
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
基于多维多阶调制的超高速准线性光传输与信号均衡
  • 批准号:
    61177071
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
  • 批准号:
    2206218
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    21K03307
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
  • 批准号:
    20H00118
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
  • 批准号:
    20K03627
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了