RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform

RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现

基本信息

  • 批准号:
    1842559
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platformSaikat Guha, Linran Fan, Dan Kilper, University of ArizonaPrinciples from quantum physics will enable far superior computational capabilities, better sensors and secure communications that are provably unbreakable by any adversary. Most of these advancements will be enabled by a new information resource called quantum entanglement. One of the most important building blocks to realize a quantum-enabled network information infrastructure that is capable of generating and distributing entanglement at high rates over long distances is the quantum repeater a quantum enabled processor that will sit at the node of the future quantum internet, augmenting the current-day network router. Our project?s goal is to research, develop and test a design for the quantum repeater, which will be realized compactly in an integrated photonic platform that produces complex many-photon entangled states on demand. The successful completion of this project will enable various applications of shared entanglement, including future-proof secure communications and multi-party secure computations, entanglement-assisted distributed sensors for far superior imaging and remote sensing, and will enable new science discoveries in areas such as chemistry and high-energy physics by letting us experiment with entangled states larger than any created so far. Even though our main thrust is to research a scalable on-chip design of a quantum repeater, the theoretical work will help us develop a deep understanding of building general and special-purpose quantum processors that use photons to encode the qubit, whereas the versatile nanophotonic platform we will design will be of value to various quantum enabled photonic information processing with applications to distributed sensing and distributed cloud-based quantum computing. Because of the highly-interdisciplinary nature of quantum information science, and our project team in particular, our education and outreach program will have a particularly broad impact in training a diverse and strong workforce at the intersection of physics, optical sciences, electrical and material science and engineering, computer network theory, and mathematics. The biggest challenge in building a quantum repeater has been the lack of good-quality quantum memories, high-rate good-fidelity matter-photon entanglement sources, and high-efficiency quantum-state-preserving frequency interconversion so as to make a telecom-wavelength quantum photon be compatible with the quantum storage and processing units. Our project?s goal is to research and develop a design of a quantum repeater that does not need quantum memories or quantum interconversion, but uses an integrated photonic source of locally-generated complex entangled states of many photonic modes to replace the action of the quantum memory by providing virtual storage of a logical quantum bit (qubit) using quantum error correction against photon loss. Such repeaters, known as all-photonic repeaters, have been proposed and recently researched by members of our team. But existing work on such repeaters need millions of near-perfect single-photon sources and detectors, along with extremely low-loss linear-optical waveguides be supplied at each repeater node. Our key insight is to develop an alternative scheme that leverages recently-demonstrated photonic multi-mode-squeezed entangled states of thousands of modes as the cluster source, but built compactly on a hybrid Aluminum Nitride - Silicon photonic platform, and use photon number detection on a subset of those modes to cast that into a universal-quantum-capable coded cluster state and develop a new logical qubit encoding into that "non-Gaussian" cluster state in a so-called Schrodinger-cat-like qubit basis. The goals of this project are: (1) establishing the theoretical design principles of a technologically-feasible all-photonic quantum repeater based on a continuous-variable (CV) entangled cluster source, (2) developing a compact, versatile integrated nanophotonic platform for generating and manipulating CV cluster states, (3) realizing direct on-demand generation of non-Gaussian universal clusters at high rates, and (4) the first measurement of entanglement distribution over one quantum repeater link that exceeds the fundamental direct-transmission rate upper limit for entanglement generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
RAISE-EQuIP:用于长距离量子通信的量子中继器,由可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现Saikat Guha、Linran Fan、Dan Kilper,亚利桑那大学量子物理学原理将实现远超卓越的计算能力,更好的传感器和安全的通信,任何对手都无法破解。大多数这些进步将通过一种称为量子纠缠的新信息资源来实现。实现量子网络信息基础设施的最重要构建模块之一是量子中继器,它是一种量子处理器,将位于未来量子互联网的节点,该基础设施能够长距离高速生成和分发纠缠。增强当前的网络路由器。我们项目的目标是研究、开发和测试量子中继器的设计,该设计将在集成光子平台中紧凑地实现,该平台可根据需要产生复杂的多光子纠缠态。该项目的成功完成将使共享纠缠的各种应用成为可能,包括面向未来的安全通信和多方安全计算、用于卓越成像和遥感的纠缠辅助分布式传感器,并将在以下领域实现新的科学发现通过让我们用比迄今为止所创造的任何纠缠态更大的纠缠态进行实验,化学和高能物理学。尽管我们的主要目标是研究量子中继器的可扩展片上设计,但理论工作将帮助我们深入了解构建通用和专用量子处理器,这些处理器使用光子来编码量子位,而多功能纳米光子我们将设计的平台将对各种量子光子信息处理有价值,并应用于分布式传感和分布式云量子计算。由于量子信息科学的高度跨学科性质,特别是我们的项目团队,我们的教育和推广计划将对在物理、光学科学、电气和材料科学的交叉领域培训多样化和强大的劳动力产生特别广泛的影响以及工程学、计算机网络理论和数学。构建量子中继器的最大挑战是缺乏高质量的量子存储器、高速率、高保真度的物质-光子纠缠源以及高效的量子态保持频率互变,以实现电信波长的传输。量子光子与量子存储和处理单元兼容。我们项目的目标是研究和开发一种量子中继器的设计,它不需要量子存储器或量子相互转换,而是使用许多光子模式的本地生成的复杂纠缠态的集成光子源来代替量子的作用通过使用量子纠错来防止光子损失,提供逻辑量子位(qubit)的虚拟存储。这种中继器被称为全光子中继器,是我们团队成员最近提出并研究的。但此类中继器的现有工作需要数百万个近乎完美的单光子源和探测器,以及在每个中继器节点提供极低损耗的线性光波导。我们的主要见解是开发一种替代方案,利用最近演示的数千种模式的光子多模压缩纠缠态作为簇源,但紧凑地构建在混合氮化铝-硅光子平台上,并在这些模式的子集,将其转换为通用量子能力的编码簇状态,并在所谓的“非高斯”簇状态中开发新的逻辑量子位编码类似薛定谔猫的量子比特基础。该项目的目标是:(1)建立基于连续变量(CV)纠缠团簇源的技术上可行的全光子量子中继器的理论设计原理,(2)开发紧凑、多功能的集成纳米光子平台生成和操纵 CV 簇状态,(3) 实现高速直接按需生成非高斯通用簇,以及 (4) 首次测量一个量子转发器链路上超出基本值的纠缠分布该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saikat Guha其他文献

Lower bounds on bipartite entanglement in noisy graph states
噪声图状态下二分纠缠的下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aqil Sajjad;Eneet Kaur;K. Goodenough;Don Towsley;Saikat Guha
  • 通讯作者:
    Saikat Guha
Distribution of entanglement in two-dimensional square grid network
二维方格网络中纠缠的分布
Maximizing Entanglement Rates via Efficient Memory Management in Flexible Quantum Switches
通过灵活量子开关中的高效内存管理最大化纠缠率
Spread Photon Transceiver for Quantum Secure Communications
用于量子安全通信的扩展光子收发器
Clifford Manipulations of Stabilizer States: A graphical rule book for Clifford unitaries and measurements on cluster states, and application to photonic quantum computing
Clifford Manipulations of Stabilizer States:Clifford酉和簇状态测量的图形规则手册,以及在光子量子计算中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashlesha Patil;Saikat Guha
  • 通讯作者:
    Saikat Guha

Saikat Guha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saikat Guha', 18)}}的其他基金

NSF Engineering Research Center for Quantum Networks (CQN)
NSF 量子网络工程研究中心 (CQN)
  • 批准号:
    1941583
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: CNS Core: Medium: Design and Analysis of Quantum Networks for Entanglement Distribution
合作研究: CNS 核心:媒介:纠缠分布的量子网络设计与分析
  • 批准号:
    1955834
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Planning Grant: Engineering Research Center for Photonic Quantum Networks (PQN)
规划资助:光子量子网络工程研究中心(PQN)
  • 批准号:
    1840389
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

热/振耦合下MicroLED巨量转移装备自稳定柔性连接机制研究
  • 批准号:
    52305597
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多源多态误差传递的复杂装备公差均衡创成机理
  • 批准号:
    52305285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
废弃混合塑料磁化裂解机理及装备开发
  • 批准号:
    52375501
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于消费级装备的不同高度单株立木实景三维建模方法
  • 批准号:
    32371867
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高压加氢装备橡胶密封氢致空穴萌生与演化行为及爆炸减压损伤机制
  • 批准号:
    52375211
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

RAISE-EQuIP: Chip-Scale Quantum Memories for Practical Quantum Communication Networks
RAISE-EQuIP:用于实用量子通信网络的芯片级量子存储器
  • 批准号:
    1842655
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
  • 批准号:
    1842641
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip
RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统
  • 批准号:
    1842692
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Integrated Higher-Dimensional Quantum Photonic Platform
RAISE-EQuIP:集成高维量子光子平台
  • 批准号:
    1842612
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
  • 批准号:
    1842691
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了