NSF Engineering Research Center for Quantum Networks (CQN)

NSF 量子网络工程研究中心 (CQN)

基本信息

  • 批准号:
    1941583
  • 负责人:
  • 金额:
    $ 2600万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The Engineering Research Center (ERC) for Quantum Networks (CQN) will take on one of the great engineering challenges of the 21st century: to lay the technical and social foundations of the quantum internet. The quantum internet will surpass the capabilities of today's internet because of the unique advantages of entanglement, a coordination of the quantum states of particles serving as computational bits that is not present in the realms of classical physics. Quantum entanglement will improve the internet in at least two important ways. First, it will enable physics-based communication security that cannot be compromised by any amount of computational power. Second, the quantum internet will create a global network of quantum computers, processors, and sensors that are fundamentally more powerful than today's technology. This will bring unprecedented advances in distributed computing and enable secure access to quantum computers for the public. As the architects of the ARPANET could not fathom the full range of applications of the modern internet, the impact of the CQN ERC may be similarly profound and multifaceted. The quantum internet can help revolutionize national security, data privacy, drug discovery, novel material design, and push the frontiers of science with ultra-sensitive telescope conglomerates tied together with entanglement. In addition to the technical innovation, CQN will work to ensure that society is well prepared for broad, affordable, and equitable access to the quantum internet and its economy. CQN ERC will proactively study the social and policy implications of this budding technology and will bring a basic understanding of quantum technology to diverse communities. At the university level, CQN will contribute to development of a new discipline--Quantum Information Science and Engineering (QISE). CQN will also develop other curricular innovations that help train a diverse workforce of quantum engineers who can intuit radically new applications of quantum information science in socially responsible ways. Under the unique leadership of a quantum information scientist, a quantum engineer, and a technology policy expert, this highly interdisciplinary University of Arizona led ERC draws from core partner institutions Harvard, MIT, and Yale - along with member institutions UMass Amherst, University of Oregon, Northern Arizona University, Howard University, University of Chicago, and Brigham Young University. CQN also enjoys the support of a strong industry consortium and the leading international partners in advancing quantum internet technology. The CQN ERC will help to support the strategic vision that is laid out in a 2020 White House memorandum on America's Quantum Networks. The technical goal of CQN ERC is to develop one of the world's first long-distance quantum communications networks enabled by fault-tolerant quantum repeaters, supported on a network backbone of quantum repeaters and switches. These quantum repeaters are special-purpose quantum processors that will enable high-speed communication of qubits (quantum bits that live in a superposition of 0 and 1) over a long distance. Equipped with quantum memories built with vacancy defect centers in diamond, and spin-photon interfaces to connect them to the modern telecommunications infrastructure, the quantum repeater and its key subcomponents will be tested, validated and improved in two testbeds (in Tucson and Boston). A team of computer scientists and network engineers will work with physicists and material scientists to design architectures and protocols for a quantum internet that seamlessly interoperates with the classical internet. Engineering R&D will coordinate with social science research on security and privacy laws, unintended biases in quantum-network-driven applications, and implications of open-source quantum cloud access. As a public-private partnership of academia, the industrial base, leading international partners, national labs and equity partners, the CQN ERC will serve as a national hub for advancing the development of the quantum internet and road mapping its anticipated applications and societal impacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子网络工程研究中心 (ERC) (CQN) 将应对 21 世纪的重大工程挑战之一:奠定量子互联网的技术和社会基础。由于纠缠的独特优势,量子互联网将超越当今互联网的能力,纠缠是作为计算位的粒子量子态的协调,这在经典物理领域中是不存在的。量子纠缠将至少在两个重要方面改善互联网。首先,它将实现基于物理的通信安全,不会受到任何计算能力的影响。其次,量子互联网将创建一个由量子计算机、处理器和传感器组成的全球网络,从根本上比当今的技术更强大。这将为分布式计算带来前所未有的进步,并使公众能够安全地访问量子计算机。由于阿帕网的架构师无法理解现代互联网的全部应用,CQN ERC 的影响可能同样深远且多方面。量子互联网可以帮助彻底改变国家安全、数据隐私、药物发现、新颖材料设计,并通过纠缠在一起的超灵敏望远镜集团推动科学前沿。除了技术创新之外,CQN 还将努力确保社会为广泛、负担得起且公平地接入量子互联网及其经济做好充分准备。 CQN ERC 将积极研究这项新兴技术的社会和政策影响,并将为不同社区带来对量子技术的基本了解。在大学层面,CQN将致力于发展一门新学科——量子信息科学与工程(QISE)。 CQN 还将开发其他课程创新,帮助培训多元化的量子工程师队伍,他们能够以对社会负责的方式直观地了解量子信息科学的全新应用。在量子信息科学家、量子工程师和技术政策专家的独特领导下,这个由亚利桑那大学领导的高度跨学科的 ERC 成员包括哈佛大学、麻省理工学院和耶鲁大学的核心合作机构以及成员机构麻省大学阿默斯特分校、俄勒冈大学、北亚利桑那大学、霍华德大学、芝加哥大学和杨百翰大学。 CQN在推进量子互联网技术方面还得到了强大的行业联盟和领先的国际合作伙伴的支持。 CQN ERC 将帮助支持 2020 年白宫关于美国量子网络的备忘录中提出的战略愿景。 CQN ERC 的技术目标是开发世界上第一个由容错量子中继器实现的长距离量子通信网络,并由量子中继器和交换机的网络主干支持。这些量子中继器是专用量子处理器,可实现长距离量子位(0 和 1 叠加的量子位)的高速通信。量子中继器及其关键子组件配备了用金刚石空位缺陷中心构建的量子存储器,以及将其连接到现代电信基础设施的自旋光子接口,将在两个测试台(图森和波士顿)中进行测试、验证和改进。由计算机科学家和网络工程师组成的团队将与物理学家和材料科学家合作,设计与经典互联网无缝互操作的量子互联网的架构和协议。工程研发将与安全和隐私法、量子网络驱动应用程序中的意外偏差以及开源量子云访问的影响等方面的社会科学研究相协调。作为学术界、工业基地、领先的国际合作伙伴、国家实验室和股权合作伙伴的公私合作伙伴关系,CQN ERC 将成为推进量子互联网发展的国家中心,并绘制其预期应用和社会影响的路线图。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing silicon carbide for quantum spintronics
  • DOI:
    10.1063/5.0004454
  • 发表时间:
    2020-05-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Son, Nguyen T.;Anderson, Christopher P.;Awschalom, David D.
  • 通讯作者:
    Awschalom, David D.
Integrated photonics on thin-film lithium niobate
  • DOI:
    10.1364/aop.411024
  • 发表时间:
    2021-06-30
  • 期刊:
  • 影响因子:
    27.1
  • 作者:
    Zhu, Di;Shao, Linbo;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane
单晶金刚石薄膜中的电信波长二维光子晶体腔
  • DOI:
    10.1063/5.0061778
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kuruma, Kazuhiro;Piracha, Afaq Habib;Renaud, Dylan;Chia, Cleaven;Sinclair, Neil;Nadarajah, Athavan;Stacey, Alastair;Prawer, Steven;Lončar, Marko
  • 通讯作者:
    Lončar, Marko
Robust and Resource-efficient Machine Learning Aided Viewport Prediction in Virtual Reality
  • DOI:
    10.1109/bigdata55660.2022.10020395
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuang Jiang;Konstantinos Poularakis;Diego Kiedanski;S. Kompella;L. Tassiulas
  • 通讯作者:
    Yuang Jiang;Konstantinos Poularakis;Diego Kiedanski;S. Kompella;L. Tassiulas
Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond
  • DOI:
    10.1063/5.0051675
  • 发表时间:
    2021-06-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kuruma, Kazuhiro;Pingault, Benjamin;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saikat Guha其他文献

Lower bounds on bipartite entanglement in noisy graph states
噪声图状态下二分纠缠的下界
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aqil Sajjad;Eneet Kaur;K. Goodenough;Don Towsley;Saikat Guha
  • 通讯作者:
    Saikat Guha
Distribution of entanglement in two-dimensional square grid network
二维方格网络中纠缠的分布
Maximizing Entanglement Rates via Efficient Memory Management in Flexible Quantum Switches
通过灵活量子开关中的高效内存管理最大化纠缠率
Spread Photon Transceiver for Quantum Secure Communications
用于量子安全通信的扩展光子收发器
Clifford Manipulations of Stabilizer States: A graphical rule book for Clifford unitaries and measurements on cluster states, and application to photonic quantum computing
Clifford Manipulations of Stabilizer States:Clifford酉和簇状态测量的图形规则手册,以及在光子量子计算中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashlesha Patil;Saikat Guha
  • 通讯作者:
    Saikat Guha

Saikat Guha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saikat Guha', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Design and Analysis of Quantum Networks for Entanglement Distribution
合作研究: CNS 核心:媒介:纠缠分布的量子网络设计与分析
  • 批准号:
    1955834
  • 财政年份:
    2020
  • 资助金额:
    $ 2600万
  • 项目类别:
    Continuing Grant
RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform
RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现
  • 批准号:
    1842559
  • 财政年份:
    2018
  • 资助金额:
    $ 2600万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Photonic Quantum Networks (PQN)
规划资助:光子量子网络工程研究中心(PQN)
  • 批准号:
    1840389
  • 财政年份:
    2018
  • 资助金额:
    $ 2600万
  • 项目类别:
    Standard Grant

相似国自然基金

层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
  • 批准号:
    12364016
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
靶向调控肿瘤3羟基丁酸代谢的工程菌在肿瘤治疗中的作用及机制研究
  • 批准号:
    82373178
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
涡流驱动熔融铜渣多相贫化过程的反应工程学研究
  • 批准号:
    52304324
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原位诱导自体自组织组织工程皮肤的应用基础研究
  • 批准号:
    82372514
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
  • 批准号:
    2407231
  • 财政年份:
    2024
  • 资助金额:
    $ 2600万
  • 项目类别:
    Continuing Grant
2023 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator (PI) Workshop
2023年美国国家科学基金会(NSF)计算机与信息科学与工程(CISE)本科生研究经验(REU)首席研究员(PI)研讨会
  • 批准号:
    2316050
  • 财政年份:
    2023
  • 资助金额:
    $ 2600万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Smart Streetscapes (CS3)
NSF 智能街景工程研究中心 (CS3)
  • 批准号:
    2133516
  • 财政年份:
    2022
  • 资助金额:
    $ 2600万
  • 项目类别:
    Cooperative Agreement
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
  • 批准号:
    2133576
  • 财政年份:
    2022
  • 资助金额:
    $ 2600万
  • 项目类别:
    Cooperative Agreement
NSF Engineering Research Center for Precision Microbiome Engineering (PreMiEr)
NSF 精密微生物组工程研究中心 (PreMiEr)
  • 批准号:
    2133504
  • 财政年份:
    2022
  • 资助金额:
    $ 2600万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了