NSF Engineering Research Center for Quantum Networks (CQN)
NSF 量子网络工程研究中心 (CQN)
基本信息
- 批准号:1941583
- 负责人:
- 金额:$ 2600万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Engineering Research Center (ERC) for Quantum Networks (CQN) will take on one of the great engineering challenges of the 21st century: to lay the technical and social foundations of the quantum internet. The quantum internet will surpass the capabilities of today's internet because of the unique advantages of entanglement, a coordination of the quantum states of particles serving as computational bits that is not present in the realms of classical physics. Quantum entanglement will improve the internet in at least two important ways. First, it will enable physics-based communication security that cannot be compromised by any amount of computational power. Second, the quantum internet will create a global network of quantum computers, processors, and sensors that are fundamentally more powerful than today's technology. This will bring unprecedented advances in distributed computing and enable secure access to quantum computers for the public. As the architects of the ARPANET could not fathom the full range of applications of the modern internet, the impact of the CQN ERC may be similarly profound and multifaceted. The quantum internet can help revolutionize national security, data privacy, drug discovery, novel material design, and push the frontiers of science with ultra-sensitive telescope conglomerates tied together with entanglement. In addition to the technical innovation, CQN will work to ensure that society is well prepared for broad, affordable, and equitable access to the quantum internet and its economy. CQN ERC will proactively study the social and policy implications of this budding technology and will bring a basic understanding of quantum technology to diverse communities. At the university level, CQN will contribute to development of a new discipline--Quantum Information Science and Engineering (QISE). CQN will also develop other curricular innovations that help train a diverse workforce of quantum engineers who can intuit radically new applications of quantum information science in socially responsible ways. Under the unique leadership of a quantum information scientist, a quantum engineer, and a technology policy expert, this highly interdisciplinary University of Arizona led ERC draws from core partner institutions Harvard, MIT, and Yale - along with member institutions UMass Amherst, University of Oregon, Northern Arizona University, Howard University, University of Chicago, and Brigham Young University. CQN also enjoys the support of a strong industry consortium and the leading international partners in advancing quantum internet technology. The CQN ERC will help to support the strategic vision that is laid out in a 2020 White House memorandum on America's Quantum Networks. The technical goal of CQN ERC is to develop one of the world's first long-distance quantum communications networks enabled by fault-tolerant quantum repeaters, supported on a network backbone of quantum repeaters and switches. These quantum repeaters are special-purpose quantum processors that will enable high-speed communication of qubits (quantum bits that live in a superposition of 0 and 1) over a long distance. Equipped with quantum memories built with vacancy defect centers in diamond, and spin-photon interfaces to connect them to the modern telecommunications infrastructure, the quantum repeater and its key subcomponents will be tested, validated and improved in two testbeds (in Tucson and Boston). A team of computer scientists and network engineers will work with physicists and material scientists to design architectures and protocols for a quantum internet that seamlessly interoperates with the classical internet. Engineering R&D will coordinate with social science research on security and privacy laws, unintended biases in quantum-network-driven applications, and implications of open-source quantum cloud access. As a public-private partnership of academia, the industrial base, leading international partners, national labs and equity partners, the CQN ERC will serve as a national hub for advancing the development of the quantum internet and road mapping its anticipated applications and societal impacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于量子网络(CQN)的工程研究中心(ERC)将承担21世纪的巨大工程挑战之一:奠定量子互联网的技术和社会基础。由于纠缠的独特优势,量子互联网将超过当今互联网的功能,这是对经典物理学领域中不存在的计算位的量子状态的协调。量子纠缠将以至少两种重要方式改善互联网。首先,它将使基于物理的通信安全性能受到任何计算能力的损害。其次,量子互联网将创建一个由量子计算机,处理器和传感器组成的全球网络,这些网络从根本上比当今的技术更强大。这将在分布式计算方面带来前所未有的进步,并为公众提供对量子计算机的安全访问。由于ARPANET的建筑师无法理解现代互联网的全部应用程序,因此CQN ERC的影响可能是同样的深刻和多方面的。量子互联网可以帮助彻底改变国家安全,数据隐私,药物发现,新颖的材料设计,并用超敏感的望远镜企业与纠缠在一起。除了技术创新外,CQN还将努力确保社会为广泛,负担得起且公平的量子互联网及其经济提供充分的准备。 CQN ERC将主动研究这项崭露头角的技术的社会和政策影响,并将对量子技术的基本理解给各种社区。在大学一级,CQN将有助于开发新的学科 - Quantum信息科学与工程(QISE)。 CQN还将开发其他课程创新,以帮助培训各种量子工程师的劳动力,这些量子工程师可以以社会负责的方式从根本上直观量子信息科学的新应用。在量子信息科学家,量子工程师和技术政策专家的独特领导下,这位高度跨学科的亚利桑那大学领导了ERC从哈佛大学,麻省理工学院和耶鲁大学的核心合作伙伴机构以及俄勒冈大学北亚利桑那大学,亚利桑那大学,芝加哥大学,芝加哥大学,俄勒冈大学,俄勒冈大学的成员机构Umass Amherst和Brigham Young and Brigham Yound University。 CQN还享有一个强大的行业财团和领先的国际合作伙伴的支持。 CQN ERC将有助于支持2020年美国量子网络的白宫备忘录中提出的战略愿景。 CQN ERC的技术目标是开发世界上第一个由易于故障的量子中继器启用的长距离量子通信网络之一,该网络支持量子中继器和开关的网络骨干。这些量子中继器是特殊用途的量子处理器,可以在很长的距离内实现高速通信(量化0和1)的高速通信。配备有钻石中的空缺缺陷中心的量子记忆,以及旋转光子界面,将它们连接到现代电信基础设施,将在两个测试床中测试,验证和改进(在图森和波士顿)中进行测试,验证和改进。一个计算机科学家和网络工程师团队将与物理学家和物质科学家合作,为量子互联网设计架构和协议,与古典互联网无缝互动。工程研发将与有关安全和隐私法的社会科学研究,量子网络驱动的应用程序中的意外偏见以及开源量子云访问的含义。作为学术界的公私合作伙伴关系,工业基础,领先的国际合作伙伴,国家实验室和股票合作伙伴,CQN ERC将成为国家枢纽,用于推进量子互联网的发展和公路映射其预期的应用程序和社会影响力。这项奖项通过NSF的法定任务,反映了由Infectiria的Intelliquial Infection和Forliatial构成的依据。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing silicon carbide for quantum spintronics
- DOI:10.1063/5.0004454
- 发表时间:2020-05-11
- 期刊:
- 影响因子:4
- 作者:Son, Nguyen T.;Anderson, Christopher P.;Awschalom, David D.
- 通讯作者:Awschalom, David D.
Integrated photonics on thin-film lithium niobate
- DOI:10.1364/aop.411024
- 发表时间:2021-06-30
- 期刊:
- 影响因子:27.1
- 作者:Zhu, Di;Shao, Linbo;Loncar, Marko
- 通讯作者:Loncar, Marko
Robust and Resource-efficient Machine Learning Aided Viewport Prediction in Virtual Reality
- DOI:10.1109/bigdata55660.2022.10020395
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yuang Jiang;Konstantinos Poularakis;Diego Kiedanski;S. Kompella;L. Tassiulas
- 通讯作者:Yuang Jiang;Konstantinos Poularakis;Diego Kiedanski;S. Kompella;L. Tassiulas
Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane
单晶金刚石薄膜中的电信波长二维光子晶体腔
- DOI:10.1063/5.0061778
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Kuruma, Kazuhiro;Piracha, Afaq Habib;Renaud, Dylan;Chia, Cleaven;Sinclair, Neil;Nadarajah, Athavan;Stacey, Alastair;Prawer, Steven;Lončar, Marko
- 通讯作者:Lončar, Marko
Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond
- DOI:10.1063/5.0051675
- 发表时间:2021-06-07
- 期刊:
- 影响因子:4
- 作者:Kuruma, Kazuhiro;Pingault, Benjamin;Loncar, Marko
- 通讯作者:Loncar, Marko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saikat Guha其他文献
Lower bounds on bipartite entanglement in noisy graph states
噪声图状态下二分纠缠的下界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aqil Sajjad;Eneet Kaur;K. Goodenough;Don Towsley;Saikat Guha - 通讯作者:
Saikat Guha
Maximizing Entanglement Rates via Efficient Memory Management in Flexible Quantum Switches
通过灵活量子开关中的高效内存管理最大化纠缠率
- DOI:
10.1109/jsac.2024.3380097 - 发表时间:
2024 - 期刊:
- 影响因子:16.4
- 作者:
Panagiotis Promponas;Víctor Valls;Saikat Guha;L. Tassiulas - 通讯作者:
L. Tassiulas
Spread Photon Transceiver for Quantum Secure Communications
用于量子安全通信的扩展光子收发器
- DOI:
10.1109/milcom58377.2023.10356367 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wesley Webb;Michael S. Bullock;Samuel H. Knarr;Timothy C. Burt;Jim A. Drakes;Saikat Guha;Boulat A. Bash;Victor G. Bucklew - 通讯作者:
Victor G. Bucklew
Clifford Manipulations of Stabilizer States: A graphical rule book for Clifford unitaries and measurements on cluster states, and application to photonic quantum computing
Clifford Manipulations of Stabilizer States:Clifford酉和簇状态测量的图形规则手册,以及在光子量子计算中的应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ashlesha Patil;Saikat Guha - 通讯作者:
Saikat Guha
Spread-photon architecture for quantum-secure communications
用于量子安全通信的扩展光子架构
- DOI:
10.1109/ipc57732.2023.10360759 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael S. Bullock;Wesley Webb;Samuel H. Knarr;Timothy C. Burt;Jim A. Drakes;Victor G. Bucklew;Saikat Guha;Boulat A. Bash - 通讯作者:
Boulat A. Bash
Saikat Guha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saikat Guha', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Design and Analysis of Quantum Networks for Entanglement Distribution
合作研究: CNS 核心:媒介:纠缠分布的量子网络设计与分析
- 批准号:
1955834 - 财政年份:2020
- 资助金额:
$ 2600万 - 项目类别:
Continuing Grant
RAISE-EQuIP: Quantum repeater for long-distance quantum communication enabled by non-Gaussian cluster states on a scalable hybrid aluminum nitride and silicon nanophotonic platform
RAISE-EQuIP:用于长距离量子通信的量子中继器,通过可扩展的混合氮化铝和硅纳米光子平台上的非高斯簇态实现
- 批准号:
1842559 - 财政年份:2018
- 资助金额:
$ 2600万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Photonic Quantum Networks (PQN)
规划资助:光子量子网络工程研究中心(PQN)
- 批准号:
1840389 - 财政年份:2018
- 资助金额:
$ 2600万 - 项目类别:
Standard Grant
相似国自然基金
基于CPTU原位测试的污染场地土-膨润土隔离墙工程特性评价及防渗性能辨识研究
- 批准号:42302320
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肿瘤微环境乳酸控制的纳米杂合工程菌精准指导CD47纳米抗体用于结肠癌免疫治疗研究
- 批准号:32301187
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于晶粒取向工程的细晶压电陶瓷驱动器研究
- 批准号:52302154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“氢气还原-氮气载热-电弧熔分”协同炼铁新工艺的多层面反应工程学研究
- 批准号:52374329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氧化镓阴阳离子多元合金工程与氧空位电活性抑制研究
- 批准号:62374147
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
$ 2600万 - 项目类别:
Continuing Grant
2023 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator (PI) Workshop
2023年美国国家科学基金会(NSF)计算机与信息科学与工程(CISE)本科生研究经验(REU)首席研究员(PI)研讨会
- 批准号:
2316050 - 财政年份:2023
- 资助金额:
$ 2600万 - 项目类别:
Standard Grant
NSF Engineering Research Center for Smart Streetscapes (CS3)
NSF 智能街景工程研究中心 (CS3)
- 批准号:
2133516 - 财政年份:2022
- 资助金额:
$ 2600万 - 项目类别:
Cooperative Agreement
NSF Engineering Research Center for Advancing Sustainable and Distributed Fertilizer Production (CASFER)
NSF 促进可持续和分布式肥料生产工程研究中心 (CASFER)
- 批准号:
2133576 - 财政年份:2022
- 资助金额:
$ 2600万 - 项目类别:
Cooperative Agreement
NSF Engineering Research Center for Precision Microbiome Engineering (PreMiEr)
NSF 精密微生物组工程研究中心 (PreMiEr)
- 批准号:
2133504 - 财政年份:2022
- 资助金额:
$ 2600万 - 项目类别:
Cooperative Agreement