BIGDATA: F: DKA: Scalable, Private Algorithms for Continual Data Analysis
BIGDATA:F:DKA:用于持续数据分析的可扩展、私有算法
基本信息
- 批准号:1832766
- 负责人:
- 金额:$ 2.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-24 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For the very same reasons that big data is transforming modern life, it also presents a profound threat to privacy and the control of personal information. A major challenge associated with big data is to enable statistical analysis of complex data sets, without compromising the privacy of the individuals whose data they contain. Addressing this challenge is both necessary, since access to many data sources is restricted due to privacy concerns, and difficult, as numerous attacks on supposedly anonymized data demonstrate. This project will investigate the design and limitations of algorithms for the private, continual analysis of time-varying data sets. That is, it will study algorithms that release information about a data set as it is collected (say, in the form of a data stream from the web, or a long-term sociological study). The research will advance the state of the art in the private analysis of "big" -- massive, complex, time-varying -- data. If successful, the project will provide enabling technologies that facilitate research in areas where access to sensitive data is limited by confidentiality concerns.The project will focus on the design of algorithms that satisfy differential privacy -- a rigorous notion of privacy that is widely studied in computer science and related fields. The privacy implications of sequential releases are still poorly understood, and relatively few of the algorithms developed in the extensive recent literature on private data analysis allow for sequential releases with high accuracy. The two major thrusts of the project are (1) algorithms for the "continual release" model, and (2) algorithms for the "local" model, which offers even stronger privacy guarantees. The work will provide novel algorithmic design techniques and understanding of complexity-theoretic limitations of algorithms for these models. The research will entail advances in related areas such as learning theory, statistical inference and streaming algorithms. The project will also include educational, outreach and work-force training activities designed to broaden the impact of the research.For further information see the project web site at: http://www.cse.psu.edu/~asmith/projects/continual/
出于同样的原因,大数据正在改变现代生活,它也对隐私和个人信息的控制构成了深刻的威胁。与大数据相关的一个主要挑战是能够对复杂数据集进行统计分析,同时又不损害数据所包含的个人的隐私。解决这一挑战既是必要的,因为由于隐私问题,对许多数据源的访问受到限制,而且也很困难,正如对所谓匿名数据的大量攻击所表明的那样。 该项目将研究用于时变数据集的私密、持续分析的算法的设计和局限性。 也就是说,它将研究在收集数据集时发布有关数据集信息的算法(例如,以来自网络的数据流或长期社会学研究的形式)。这项研究将推动对“大”数据(海量、复杂、随时间变化的数据)进行私人分析的最先进水平。如果成功,该项目将提供支持技术,促进对敏感数据的访问因保密问题而受到限制的领域的研究。该项目将重点关注满足差异隐私的算法设计——差异隐私是一种严格的隐私概念,在计算机科学及相关领域。顺序发布的隐私影响仍然知之甚少,并且在最近有关私人数据分析的大量文献中开发的算法相对较少允许高精度的顺序发布。该项目的两大主旨是(1)“持续发布”模型的算法,以及(2)“本地”模型的算法,提供更强的隐私保证。这项工作将提供新颖的算法设计技术以及对这些模型算法的复杂性理论限制的理解。该研究将带来学习理论、统计推理和流算法等相关领域的进步。该项目还将包括旨在扩大研究影响的教育、外展和劳动力培训活动。有关更多信息,请参阅项目网站:http://www.cse.psu.edu/~asmith/projects/连续/
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When is non-trivial estimation possible for graphons and stochastic block models?‡
什么时候可以对图子和随机块模型进行非平凡的估计?
- DOI:10.1093/imaiai/iax010
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:McMillan, Audra;Smith, Adam
- 通讯作者:Smith, Adam
Testing Lipschitz Functions on Hypergrid Domains
在超网格域上测试 Lipschitz 函数
- DOI:10.1007/s00453-015-9984-y
- 发表时间:2016
- 期刊:
- 影响因子:1.1
- 作者:Awasthi, Pranjal;Jha, Madhav;Molinaro, Marco;Raskhodnikova, Sofya
- 通讯作者:Raskhodnikova, Sofya
Instantiability of RSA-OAEP Under Chosen-Plaintext Attack
- DOI:10.1007/s00145-016-9238-4
- 发表时间:2010-08
- 期刊:
- 影响因子:3
- 作者:Eike Kiltz;Adam O'Neill;Adam D. Smith
- 通讯作者:Eike Kiltz;Adam O'Neill;Adam D. Smith
Is Interaction Necessary for Distributed Private Learning?
- DOI:10.1109/sp.2017.35
- 发表时间:2017-05
- 期刊:
- 影响因子:0
- 作者:Adam D. Smith;Abhradeep Thakurta;Jalaj Upadhyay
- 通讯作者:Adam D. Smith;Abhradeep Thakurta;Jalaj Upadhyay
Lipschitz Extensions for Node-Private Graph Statistics and the Generalized Exponential Mechanism
- DOI:10.1109/focs.2016.60
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:Sofya Raskhodnikova;Adam D. Smith
- 通讯作者:Sofya Raskhodnikova;Adam D. Smith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Smith其他文献
Multi-dimensional optical data writing techniques for cloud-scale archival storage
用于云规模档案存储的多维光学数据写入技术
- DOI:
10.1117/12.2649177 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrick Anderson;E. Aranas;Richard Black;S. Bucciarelli;Marco Caballero;Pashmina Cameron;Burcu Canakci;Andromachi Chatzieleftheriou;James Clegg;Daniel Cletheroe;Bridgette Cooper;T. Deegan;Austin Donnelly;R. Drevinskas;C. Gkantsidis;Ariel Gomez Diaz;István Haller;Philip Heard;Teodora Ilieva;Russell Joyce;Sergey Legtchenko;Bruno Magalhães;Aaron Ogus;Ant Rowstron;M. Sakakura;Nina Schreiner;Adam Smith;Ioan A. Stefanovici;David Sweeney;Phil Wainman;C. Whittaker;Hugh Williams;T. Winkler;S. Winzeck - 通讯作者:
S. Winzeck
Archaeologies of Sovereignty
主权考古学
- DOI:
10.1146/annurev-anthro-081309-145754 - 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Adam Smith - 通讯作者:
Adam Smith
SOFTENING THE BLOW: MANAGING DEADLINES IN ONLINE COURSES
减轻打击:管理在线课程的截止日期
- DOI:
10.21125/inted.2017.1763 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew Johnson;Peter Ruthven;Adam Smith - 通讯作者:
Adam Smith
Mantis: an all-sky visible-to-near-infrared hyper-angular spectropolarimeter.
Mantis:全天空可见光到近红外超角分光偏振计。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Robert Foster;D. Gray;J. Bowles;D. Korwan;I. Slutsker;M. Sorokin;Michael Roche;Adam Smith;L. Pezzaniti - 通讯作者:
L. Pezzaniti
Adaptive Resonant Mode Active Noise Control
- DOI:
- 发表时间:
2006-01 - 期刊:
- 影响因子:0
- 作者:
Adam Smith - 通讯作者:
Adam Smith
Adam Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Smith', 18)}}的其他基金
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 2.15万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232694 - 财政年份:2023
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
Travel: Student Travel Grant for 2022 Boston Differential Privacy Summer School
旅行:2022 年波士顿差异隐私暑期学校学生旅行补助金
- 批准号:
2227905 - 财政年份:2022
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
2308307 - 财政年份:2022
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
- 批准号:
2120667 - 财政年份:2021
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award:Examination of Multiple Chronologies
博士论文改进奖:多年表审查
- 批准号:
2106251 - 财政年份:2021
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
Collaborative Research: ERASE-PFAS: Remediation of Per- and Polyfluoroalkyl Substances in Wastewater using Anaerobic Membrane Bioreactors
合作研究:ERASE-PFAS:使用厌氧膜生物反应器修复废水中的全氟烷基和多氟烷基物质
- 批准号:
2112651 - 财政年份:2021
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759708 - 财政年份:2018
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Foundations of Adaptive Data Analysis
AF:媒介:协作研究:自适应数据分析的基础
- 批准号:
1763786 - 财政年份:2018
- 资助金额:
$ 2.15万 - 项目类别:
Continuing Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
1753060 - 财政年份:2018
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
相似国自然基金
HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
- 批准号:21402148
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Co-administration of pramlintide and insulin via an automated dual hormone artificial pancreas system to regulate glucose levels in adults with type 1 diabetes
通过自动双激素人工胰腺系统联合施用普兰林肽和胰岛素来调节成人 1 型糖尿病患者的血糖水平
- 批准号:
500273 - 财政年份:2022
- 资助金额:
$ 2.15万 - 项目类别:
Studentship Programs
Planning and partnership development for a scalable intervention to prevent diabetic ketoacidosis (DKA) in children at diabetes diagnosis in Canada
规划和发展合作伙伴关系,以开展可扩展的干预措施,以预防加拿大糖尿病诊断儿童的糖尿病酮症酸中毒 (DKA)
- 批准号:
460080 - 财政年份:2022
- 资助金额:
$ 2.15万 - 项目类别:
Miscellaneous Programs
What is diabetic ketoacidosis (DKA)? - DiaBiteSize
什么是糖尿病酮症酸中毒(DKA)?
- 批准号:
374886 - 财政年份:2017
- 资助金额:
$ 2.15万 - 项目类别:
Salary Programs
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1661760 - 财政年份:2016
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1664720 - 财政年份:2016
- 资助金额:
$ 2.15万 - 项目类别:
Standard Grant