Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
基本信息
- 批准号:2120667
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in large-scale machine learning (ML) promise a range of benefits to society, but also introduce new risks. One major risk is a loss of privacy for the individuals whose data powers the machine learning algorithms. There are now convincing demonstrations that algorithms for machine learning can reveal sensitive information about individuals in their training data by memorizing specific strings of sensitive text such as bank account numbers or through membership-inference attacks. In the recent years, a framework called differential privacy---a mathematically principled, quantitative notion of what it means for an algorithm to ensure privacy for the individuals who contribute training data---has led to significant progress towards privacy in machine learning. This progress offers a proof-of-concept that we can hope to enjoy some of the benefits of using machine learning on sensitive data, while measuring and limiting breaches of confidentiality. This project will investigate and begin to make some of the fundamental advances that are necessary to make differentially private ML a viable technology. The focus will be on laying the groundwork for differentially private ML for entire systems, rather than for standalone tasks, which have been the focus of prior work. This project team comprising researchers with a broad range of expertise in ML, algorithms, systems, and cybersecurity, has planned a set of education tasks: public-facing set of course materials on differentially private machine learning and statistics and and an undergraduate-level textbook on differential privacy.This project includes three technical thrusts that will lay the groundwork for future efforts to build private ML systems. The first thrust will be to improve the foundational algorithms that enable differentially private ML on high-dimensional data. The second thrust will be to build a bridge between algorithms for standalone ML tasks and algorithms for systems-level workloads of ML tasks, by developing differentially private algorithms for training many personalized models, which is a paradigmatic workload in ML. The final thrust will consist of empirical work on auditing differentially private ML methods to understand how the real-world privacy costs compare to those predicted by the theory of differential privacy when these algorithms are used as part of realistic workloads, such as models that are continually updated with new data. This privacy auditing will also facilitate detecting unwanted memorization of training data in machine learning, and also provide more quantitative approaches to auditing differentially private algorithms based on membership-inference and data poisoning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模机器学习 (ML) 的最新进展有望为社会带来一系列好处,但也带来了新的风险。 一项主要风险是为机器学习算法提供数据支持的个人的隐私丧失。现在有令人信服的证据表明,机器学习算法可以通过记忆特定的敏感文本字符串(例如银行帐号)或通过成员推理攻击来揭示训练数据中有关个人的敏感信息。近年来,一种称为差异隐私的框架(一种数学原理的定量概念,说明算法对于确保贡献训练数据的个人的隐私意味着什么)已经在机器学习的隐私方面取得了重大进展。这一进展提供了一个概念验证,即我们希望能够享受到在敏感数据上使用机器学习的一些好处,同时衡量和限制机密性的泄露。 该项目将调查并开始取得一些必要的基本进展,使差分隐私机器学习成为可行的技术。 重点将是为整个系统的差异化私有机器学习奠定基础,而不是为独立任务奠定基础,后者是之前工作的重点。 该项目团队由在机器学习、算法、系统和网络安全领域拥有广泛专业知识的研究人员组成,计划了一系列教育任务:面向公众的一套关于差异化私有机器学习和统计的课程材料以及一本本科水平的教科书该项目包括三个技术要点,将为未来构建私有机器学习系统奠定基础。 第一个目标是改进基础算法,以实现高维数据上的差分隐私机器学习。 第二个重点是通过开发用于训练许多个性化模型(ML 中的典型工作负载)的差分私有算法,在独立 ML 任务的算法和 ML 任务的系统级工作负载算法之间建立一座桥梁。 最后的重点将包括审核差分隐私 ML 方法的实证工作,以了解当这些算法用作实际工作负载的一部分(例如持续不断的模型)时,现实世界的隐私成本与差分隐私理论预测的隐私成本相比如何。更新了新数据。这种隐私审计还将有助于检测机器学习中不必要的训练数据记忆,并提供更多定量方法来审计基于成员推理和数据中毒的差分隐私算法。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:S. Denisov;H. B. McMahan;J. Rush;Adam D. Smith;Abhradeep Thakurta
- 通讯作者:S. Denisov;H. B. McMahan;J. Rush;Adam D. Smith;Abhradeep Thakurta
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian DistributionsGavin Brown and Samuel B. Hopkins and Adam D. Smith
亚高斯分布的快速、样本高效、仿射不变私有均值和协方差估计Gavin Brown、Samuel B. Hopkins 和 Adam D. Smith
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brown, Gavin;Hopkins, Samuel B;Smith, Adam D
- 通讯作者:Smith, Adam D
Strong Memory Lower Bounds for Learning Natural Models
- DOI:10.48550/arxiv.2206.04743
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Gavin Brown;Mark Bun;Adam M. Smith
- 通讯作者:Gavin Brown;Mark Bun;Adam M. Smith
Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation
在持续观察下计算具有差异隐私的旋转栅门模型中的不同元素
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kalemaj, Iden;Jain, Palak;Raskhodnikova, Sofya;Sivakumar, Satchit;Smith, Adam D
- 通讯作者:Smith, Adam D
The Price of Differential Privacy under Continual Observation
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Palak Jain;Sofya Raskhodnikova;Satchit Sivakumar;Adam D. Smith
- 通讯作者:Palak Jain;Sofya Raskhodnikova;Satchit Sivakumar;Adam D. Smith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Smith其他文献
Multi-dimensional optical data writing techniques for cloud-scale archival storage
用于云规模档案存储的多维光学数据写入技术
- DOI:
10.1117/12.2649177 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrick Anderson;E. Aranas;Richard Black;S. Bucciarelli;Marco Caballero;Pashmina Cameron;Burcu Canakci;Andromachi Chatzieleftheriou;James Clegg;Daniel Cletheroe;Bridgette Cooper;T. Deegan;Austin Donnelly;R. Drevinskas;C. Gkantsidis;Ariel Gomez Diaz;István Haller;Philip Heard;Teodora Ilieva;Russell Joyce;Sergey Legtchenko;Bruno Magalhães;Aaron Ogus;Ant Rowstron;M. Sakakura;Nina Schreiner;Adam Smith;Ioan A. Stefanovici;David Sweeney;Phil Wainman;C. Whittaker;Hugh Williams;T. Winkler;S. Winzeck - 通讯作者:
S. Winzeck
Archaeologies of Sovereignty
主权考古学
- DOI:
10.1146/annurev-anthro-081309-145754 - 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Adam Smith - 通讯作者:
Adam Smith
SOFTENING THE BLOW: MANAGING DEADLINES IN ONLINE COURSES
减轻打击:管理在线课程的截止日期
- DOI:
10.21125/inted.2017.1763 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrew Johnson;Peter Ruthven;Adam Smith - 通讯作者:
Adam Smith
Mantis: an all-sky visible-to-near-infrared hyper-angular spectropolarimeter.
Mantis:全天空可见光到近红外超角分光偏振计。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Robert Foster;D. Gray;J. Bowles;D. Korwan;I. Slutsker;M. Sorokin;Michael Roche;Adam Smith;L. Pezzaniti - 通讯作者:
L. Pezzaniti
Adaptive Resonant Mode Active Noise Control
- DOI:
- 发表时间:
2006-01 - 期刊:
- 影响因子:0
- 作者:
Adam Smith - 通讯作者:
Adam Smith
Adam Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Smith', 18)}}的其他基金
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232694 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Travel: Student Travel Grant for 2022 Boston Differential Privacy Summer School
旅行:2022 年波士顿差异隐私暑期学校学生旅行补助金
- 批准号:
2227905 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
2308307 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award:Examination of Multiple Chronologies
博士论文改进奖:多年表审查
- 批准号:
2106251 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ERASE-PFAS: Remediation of Per- and Polyfluoroalkyl Substances in Wastewater using Anaerobic Membrane Bioreactors
合作研究:ERASE-PFAS:使用厌氧膜生物反应器修复废水中的全氟烷基和多氟烷基物质
- 批准号:
2112651 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759708 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Foundations of Adaptive Data Analysis
AF:媒介:协作研究:自适应数据分析的基础
- 批准号:
1763786 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Lipid Regulation of Receptor Tyrosine Kinases
职业:受体酪氨酸激酶的脂质调节
- 批准号:
1753060 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Social brains and solitary bees: A phylogenetic test of the effect of social behavior on brain evolution across multiple gains and losses of sociality
合作研究:社交大脑和独居蜜蜂:社会行为对大脑进化影响的系统发育测试,涉及社交性的多种得失
- 批准号:
1755375 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant