BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
基本信息
- 批准号:1661760
- 负责人:
- 金额:$ 24.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data are often modeled as matrices; and, as a result, linear algebraic algorithms such as matrix decompositions have proven extremely successful in the analysis of many data sets. Randomized Numerical Linear Algebra (RandNLA) integrates the complementary perspectives that Theoretical Computer Science and Numerical Linear Algebra bring to matrix computations, and it is a new paradigm for the design and analysis of such algorithms and for using the resulting insight to solve important scientific and societal problems. Current RandNLA algorithms extract linear structure from data matrices. The proposed work will extend RandNLA methods to multi-linear and other non-linear structure in data matrices.In more detail, the proposed work will investigate two important, non-linear, structural settings in order to start making progress towards using RandNLA approaches in situations where the underlying data exhibit non-linear structure: it will investigate how to design the next generation of RandNLA algorithms that can handle data that exhibit multi-linear structures captured by tensors; and it will investigate the applicability of RandNLA approaches to data that exhibit non-linear structure, as captured by non-linear dimensionality reduction techniques, local spectral methods, and related semi-supervised eigenvector tools. In addition, it will evaluate the proposed approaches on data applications where the PIs have significant expertise, such as the statistical analysis of population genetics data and astronomical data. Broader impacts of the project include graduate and undergraduate training, workshops and code development for RandNLA. For further information see the project web site at:http://www.stat.berkeley.edu/~mmahoney/projects/nsf-multilinear/
数据通常被建模为矩阵;因此,在对许多数据集的分析中,诸如基质分解等线性代数算法(例如矩阵分解)非常成功。 随机数值线性代数(RANDNLA)整合了理论计算机科学和数值线性代数的互补观点,将其带入矩阵计算,这是对此类算法的设计和分析的新范式,用于利用由此产生的见解来解决重要的科学和社会问题。 当前的Randnla算法从数据矩阵中提取线性结构。 The proposed work will extend RandNLA methods to multi-linear and other non-linear structure in data matrices.In more detail, the proposed work will investigate two important, non-linear, structural settings in order to start making progress towards using RandNLA approaches in situations where the underlying data exhibit non-linear structure: it will investigate how to design the next generation of RandNLA algorithms that can handle data that exhibit multi-linear structures被张量捕获;它将研究Randnla方法对表现出非线性结构的数据的适用性,如非线性降低降低技术,局部光谱方法以及相关的半监督特征向量工具所捕获的那样。此外,它将评估PI具有重要专业知识的数据应用程序所提出的方法,例如人群遗传学数据和天文数据的统计分析。 该项目的更广泛影响包括Randnla的研究生和本科培训,研讨会和代码开发。 有关更多信息,请参见项目网站:http://www.stat.berkeley.edu/~mmahoney/projects/nsf-multililinear/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petros Drineas其他文献
A randomized least squares solver for terabyte-sized dense overdetermined systems
- DOI:
10.1016/j.jocs.2016.09.007 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Chander Iyer;Haim Avron;Georgios Kollias;Yves Ineichen;Christopher Carothers;Petros Drineas - 通讯作者:
Petros Drineas
Petros Drineas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petros Drineas', 18)}}的其他基金
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209509 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1814041 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Randomization as a Resource for Rapid Prototyping
FRG:协作研究:随机化作为快速原型制作的资源
- 批准号:
1760353 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
III: Small: Novel Statistical Data Analysis Approaches for Mining Human Genetics Datasets
III:小型:挖掘人类遗传学数据集的新颖统计数据分析方法
- 批准号:
1715202 - 财政年份:2017
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
- 批准号:
1661756 - 财政年份:2016
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1447283 - 财政年份:2014
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
III: Small: Fast and Efficient Algorithms for Matrix Decompositions and Applications to Human Genetics
III:小:快速高效的矩阵分解算法及其在人类遗传学中的应用
- 批准号:
1319280 - 财政年份:2013
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Algorithms in Linear Algebra and Numerical Evaluations on Massive Datasets
合作研究:线性代数中的随机算法和海量数据集的数值评估
- 批准号:
1008983 - 财政年份:2010
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
AF: Small: Fast and Efficient Randomized Algorithms for Solving Laplacian Systems of Linear Equations and Sparse Least Squares Problems
AF:小型:用于解决线性方程拉普拉斯系统和稀疏最小二乘问题的快速高效随机算法
- 批准号:
1016501 - 财政年份:2010
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
相似国自然基金
HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
- 批准号:21402148
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1664720 - 财政年份:2016
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447473 - 财政年份:2015
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447413 - 财政年份:2015
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447476 - 财政年份:2015
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1447283 - 财政年份:2014
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant