EAGER: manipulating spin dynamics in thionated perylene diimide organic semiconductors: towards organic spin caloritronic devices

EAGER:操纵硫代苝二酰亚胺有机半导体中的自旋动力学:走向有机自旋热电子器件

基本信息

  • 批准号:
    1824263
  • 负责人:
  • 金额:
    $ 25.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical SummaryMoore's Law, the dominant strategy for improving the speed and efficiency of electronic devices, relies on scaling down the transistor dimensions, so that more of them fit in a defined area, but technology is approaching a size scale in which pursuing this strategy further can only be done with an enormous increase in fabrication cost. Fundamentally new strategies are needed to accommodate society's increasing technological demands. Spin-based solid-state systems (spintronics), represent such a fundamentally new strategy. Unlike conventional electronics, where the charge of electrons is used to store and process information in transistors, spintronics uses the spin of electrons to carry digital information. With this award, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the principle investigator synthesizes novel n-type organic semiconductors that are good candidates for spin-based computing technologies. Due to their strong spin-dependent properties they are efficient spin-transistor materials. Additionally, the researchers investigate, if waste heat from a device may also be converted into spin currents thus increasing the overall efficiency of spin-transistor devices. An innovative education and outreach program, which includes bi-weekly hands-on research experiences related to energy conversion and storage into the science curriculum of a local urban high-need school in the Salt Lake City area, is part of this research project. Additionally, underprivileged students from local high-schools are given the opportunity to pursue research over the summer in the principle investigator's labs.Technical SummaryRecent advances in the field of organic electronics have demonstrated that the physical and chemical properties of organic semiconductors can be vastly improved by tuning the molecular arrangement of the sp2 hybridized backbone system or by oxidatively doping the organic molecule to form either a p-type or n-type semiconductor. Although p-type organic semiconductors have been largely explored as potential thermoelectric and spintronic materials, n-type organic semiconductors have fallen behind due to their low electron affinities. As part of this award, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the principle investigator synthesizes novel n-type organic semiconductors based on the thionation of perylene diimides. Additionally, fundamental mechanistic understanding of the influence of electronic structure, morphology, intrinsic and extrinsic doping, and spins on the thermoelectric and spintronic properties of these perylene diimide n-type organic semiconductors is being elucidated. The studies investigate new breakthroughs in both materials design and modulation of fundamental physical phenomena by carefully elucidating the role of spin-orbit coupling, electron-phonon coupling, and solid-state crystal chemistry on the performance of thionated perylene diimide thermoelectric and spintronic materials. An innovative education and outreach program, which includes bi-weekly hands-on research experiences related to energy conversion and storage into the science curriculum of a local urban high-need school in the Salt Lake City area, is part of this research project. Additionally, underprivileged students from local high schools are given the opportunity to pursue research over the summer in the principle investigator's labs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要定律是提高电子设备速度和效率的主要策略,依赖于缩小晶体管尺寸的扩展,因此更多的策略使得它们适合定义的区域,但是技术的尺寸仅在制造成本中进一步提高,只能在制造成本中进一步提高这种策略。从根本上讲,需要采取新的策略来适应社会日益增长的技术需求。基于旋转的固态系统(Spintronics)代表了这种根本新的策略。与传统的电子设备不同,电子的电荷用于在晶体管中存储和处理信息,Spintronics使用电子旋转来携带数字信息。凭借该奖项,该奖项得到了材料研究部的固态和材料化学计划的支持,该原则研究者合成了新型的N型有机半导体,这些n型有机半导体是基于旋转的计算技术的良好候选者。由于其强大的自旋依赖性特性,它们是有效的自旋透射材料。此外,研究人员研究了设备中的废热是否也可以转化为自旋电流,从而提高了自旋晶体管设备的整体效率。一项创新的教育和外展计划包括每两周一次的动手研究经验,与能源转换和存储有关盐湖城当地城市高需求学校的科学课程有关,是该研究项目的一部分。此外,从本地研究者实验室的夏季,当地高中贫民窟的学生有机会在夏季进行研究。技术摘要在有机电子学领域的进展,有机电子学领域的进步已经证明,有机和化学特性可以通过调谐型摩尔的分子安排来大大改善,从而大大改善sp2 hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrid hybrids ofere topent hybrid hybrid hybrid hybrid hybrids beackone becon的概要。 P型或N型半导体。尽管P型有机半导体在很大程度上被探讨为潜在的热电和自旋材料,但由于其低电子亲和力,N型有机半导体落后了。作为该奖项的一部分,该奖项得到了材料研究部的固态和材料化学计划的支持,该原则研究者根据二酰亚胺的thionation综合了新型的N型有机半导体。 此外,阐明了对这些二酰亚胺N型有机半导体的热电和自旋特性的电子结构,形态,内在和外部掺杂的影响的基本机械理解。研究研究了材料设计和基本物理现象调制的新突破,通过仔细阐明自旋轨道耦合,电子 - 音波耦合和固态晶体化学对硫二二酰亚胺二酰亚胺热电离热和生态材料的作用。一项创新的教育和外展计划包括每两周一次的动手研究经验,与能源转换和存储有关盐湖城当地城市高需求学校的科学课程有关,是该研究项目的一部分。此外,来自当地高中的贫困学生有机会在夏季在原则调查员的实验室中进行研究。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WWMOD? What would metal oxides do?: Redefining their applicability in today’s energy technologies
  • DOI:
    10.1016/j.poly.2019.06.001
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Laura Flannery;Heilly Gálvez;Wendy J. Nimens;A. A. Rahman-A.;Luisa Whittaker‐Brooks
  • 通讯作者:
    Laura Flannery;Heilly Gálvez;Wendy J. Nimens;A. A. Rahman-A.;Luisa Whittaker‐Brooks
Steric hindrance dependence on the spin and morphology properties of highly oriented self-doped organic small molecule thin films
  • DOI:
    10.1039/d0ma00822b
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Daniel Powell;Eric V Campbell;Laura Flannery;J. Ogle;S. Soss;Luisa Whittaker‐Brooks
  • 通讯作者:
    Daniel Powell;Eric V Campbell;Laura Flannery;J. Ogle;S. Soss;Luisa Whittaker‐Brooks
Promoting Bandlike Transport in Well-Defined and Highly Conducting Polymer Thin Films upon Controlling Dopant Oxidation Levels and Polaron Effects
  • DOI:
    10.1021/acsapm.1c00069
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Ogle;Daniel Powell;Detlef-Matthias Smilgies;D. Nordlund;Luisa Whittaker‐Brooks
  • 通讯作者:
    J. Ogle;Daniel Powell;Detlef-Matthias Smilgies;D. Nordlund;Luisa Whittaker‐Brooks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luisa Whittaker-Brooks其他文献

Luisa Whittaker-Brooks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luisa Whittaker-Brooks', 18)}}的其他基金

Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Developing self-assembly strategies for the fabrication of well-defined and large area 2D coordination polymers
开发用于制造明确的大面积二维配位聚合物的自组装策略
  • 批准号:
    2326228
  • 财政年份:
    2023
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
CAS: Magnetic moment-induced adaptability of vertically-oriented 1D electrochemical systems
CAS:垂直定向一维电化学系统的磁矩诱导适应性
  • 批准号:
    2203926
  • 财政年份:
    2022
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a laboratory beamline small (wide)-angle X-ray scattering tool for in-situ characterization of (bio)materials
MRI:获取实验室光束线小(广角)角度 X 射线散射工具,用于(生物)材料的原位表征
  • 批准号:
    2018413
  • 财政年份:
    2020
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Developing in operando structure-property-function guidelines for small molecule organic electron acceptors and its implication on device performance and charge carrier mobility
小分子有机电子受体的操作结构-性能-功能指南的开发及其对器件性能和载流子迁移率的影响
  • 批准号:
    2016191
  • 财政年份:
    2020
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant

相似国自然基金

压力耐受操纵子ter在高毒力肺炎克雷伯菌中的传播机制及适应性研究
  • 批准号:
    32300156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
糖原代谢操纵子glgBXCAP调控福氏志贺菌抗逆和致病的分子机制研究
  • 批准号:
    82372258
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于可调制长周期外场诱导的强关联系统中量子态的探测与操纵研究
  • 批准号:
    12305026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
风险投资连续时间金融合约设计:基于短期操纵和长期行为的视角
  • 批准号:
    72371202
  • 批准年份:
    2023
  • 资助金额:
    39.00 万元
  • 项目类别:
    面上项目
单细胞水平分子尺度多功能光电操纵技术及仪器
  • 批准号:
    22374129
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits
职业:探测和操纵顺磁单分子电路中的电子和自旋自由度
  • 批准号:
    2145276
  • 财政年份:
    2022
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
Manipulating Spinor Quantum Gases --- Spin, Charge and Their Interplay
操纵自旋量子气体——自旋、电荷及其相互作用
  • 批准号:
    2207283
  • 财政年份:
    2022
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Standard Grant
Manipulating the strong quantum spin fluctuations in triple perovskites with effective spin-1/2 triangular lattice
利用有效自旋 1/2 三角晶格操纵三重钙钛矿中的强量子自旋涨落
  • 批准号:
    2003117
  • 财政年份:
    2020
  • 资助金额:
    $ 25.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了