Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
基本信息
- 批准号:2130727
- 负责人:
- 金额:$ 35.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fast and accurate computer simulation of complex engineering systems is required for real-time control and engineering design. This grant will support research that will advance balanced truncation model reduction for nonlinear systems, a mathematical framework to produce reliable, accurate, and computationally efficient simulators. Despite the theoretical foundations having been laid in the 1990s, computational implementations that scale to the high dimensionality needed for today’s complex engineering systems are lacking to date. This research will overcome this barrier by developing and employing modern high-performance algorithms that exploit the mathematical structure of the equations that have to be solved. The resulting simulators will, for instance, advance the control and operation of satellites through accurate real-time estimation of atmospheric satellite drag; advance the design of aircraft through low-resource computational models that allow for a large number of design iterations; and optimize our cities’ water networks through efficiently simulating water flows and water quality so that pump stations can be scheduled optimally. This will result in greater benefits to society, improvements of civil infrastructure, and contribute to the industrial competitiveness of the United States. This grant will also support science, technology, engineering and mathematics (STEM) workforce training through a workshop at Virginia Tech that targets early-career researchers, as well as through undergraduate research opportunities.This research seeks to develop a new class of reduced-order models and controllers for complex high-dimensional polynomial nonlinear systems via the concept of nonlinear balanced truncation. To date, this framework has not been applied to model reduction for high-dimensional nonlinear systems since solving the Hamilton-Jacobi-Bellman (HJB) equations, which are at the core of the balancing approach, remained infeasible for large-scale systems. Very recent developments in tensor calculus, nonlinear state transformations, and polynomial feedback laws now make the solution to this problem feasible. This project will develop a scalable tensor-based approach to solve the HJB equations to obtain polynomial expansions of the energy functions required for balanced truncation, as well as high-performance algorithms and numerical analysis to analyze the conditioning of the tensorized problems. Moreover, efficient algorithms for parametric nonlinear balancing will be designed by exploiting the structure in parameter space. Additionally, reduced-order nonlinear controllers will be designed using a simultaneous reduction and control framework, which is far superior to the existing reduce-then-control framework. The project will also develop a theory for the robustness of these controllers, and their stabilizing properties when applied to the high-dimensional systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
实时控制和工程设计需要对复杂工程系统进行快速、准确的计算机模拟。这笔拨款将支持推进非线性系统平衡截断模型简化的研究,这是一种产生可靠、准确和计算高效的模拟器的数学框架。尽管理论基础已在 20 世纪 90 年代奠定,但迄今为止仍缺乏可扩展到当今复杂工程系统所需的高维的计算实现。这项研究将通过开发和采用利用现代高性能算法来克服这一障碍。例如,由此产生的模拟器将通过准确实时估计大气卫星阻力来推进卫星的控制和操作;通过低资源计算模型推进飞机的设计。进行大量的设计迭代;并通过有效模拟水流和水质来优化我们的城市供水网络,以便优化规划泵站,这将为社会带来更大的利益,改善民用基础设施,并为人类健康做出贡献。美国的产业竞争力。这笔赠款还将通过弗吉尼亚理工大学针对早期职业研究人员的研讨会以及本科生研究机会来支持科学、技术、工程和数学 (STEM) 劳动力培训。这项研究旨在开发一类新的降阶通过非线性平衡截断的概念构建复杂高维多项式非线性系统的模型和控制器迄今为止,自从求解 Hamilton-Jacobi-Bellman (HJB) 方程以来,该框架尚未应用于高维非线性系统的模型简化。作为平衡方法的核心,对于大规模系统来说仍然不可行。张量微积分、非线性状态变换和多项式反馈定律的最新发展现在使得该问题的解决方案变得可行。该项目将开发一种可扩展的张量。基于方法来求解 HJB 方程以获得平衡截断所需的能量函数的多项式展开,以及高性能算法和数值分析来分析张量化问题的条件。参数非线性平衡将通过利用参数空间中的结构来设计,此外,降阶非线性控制器将使用同时降阶和控制框架来设计,该框架也将远远优于现有的降阶控制框架。开发一种关于这些控制器的鲁棒性及其应用于高维系统时的稳定性能的理论。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boris Kramer其他文献
Increasing certainty in systems biology models using Bayesian multimodel inference
使用贝叶斯多模型推理提高系统生物学模型的确定性
- DOI:
10.3758/s13415-023-01099-z - 发表时间:
2024-06-17 - 期刊:
- 影响因子:0
- 作者:
Nathaniel Linden;Jin Zhang;Boris Kramer;P. Rangamani - 通讯作者:
P. Rangamani
Tangential interpolation-based eigensystem realization algorithm for MIMO systems
基于切向插值的MIMO系统特征系统实现算法
- DOI:
10.1080/13873954.2016.1198389 - 发表时间:
2016-06-22 - 期刊:
- 影响因子:1.9
- 作者:
Boris Kramer;S. Gugercin - 通讯作者:
S. Gugercin
Gradient Preserving Operator Inference: Data-Driven Reduced-Order Models for Equations with Gradient Structure
梯度保持算子推理:具有梯度结构的方程的数据驱动降阶模型
- DOI:
10.1016/j.cma.2024.117033 - 发表时间:
2024-01-22 - 期刊:
- 影响因子:0
- 作者:
Yuwei Geng;Jasdeep Singh;Lili Ju;Boris Kramer;Zhu Wang - 通讯作者:
Zhu Wang
Learning Nonlinear Reduced Models from Data with Operator Inference
使用算子推理从数据中学习非线性简化模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:27.7
- 作者:
Boris Kramer;B. Peherstorfer;Karen E. Willcox - 通讯作者:
Karen E. Willcox
Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses
柯萨奇 B 病毒六种血清型的 100 千道尔顿结合蛋白的表征
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:5.4
- 作者:
U. Raab;De;Verdugo;H. Selinka;Mitchell Huber;Boris Kramer;Josef Kellermann;P. H. Hofschneider;Reinhard Kandolf - 通讯作者:
Reinhard Kandolf
Boris Kramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boris Kramer', 18)}}的其他基金
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
- 批准号:
2144023 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
Continuing Grant
相似国自然基金
不确定非线性系统的事件触发控制研究
- 批准号:62373096
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学键对硫代硼酸盐结构及非线性光学性能的调控研究
- 批准号:22305264
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全方向非线性变换张量奇异值分解的研究及其应用
- 批准号:12301482
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性薛定谔方程多波包爆破解和多孤立波解的研究
- 批准号:12371122
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向光信息防护的光纤光学视界下非线性孤子碰撞动力学研究
- 批准号:62375080
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318952 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318951 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308640 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant