Developing self-assembly strategies for the fabrication of well-defined and large area 2D coordination polymers

开发用于制造明确的大面积二维配位聚合物的自组装策略

基本信息

  • 批准号:
    2326228
  • 负责人:
  • 金额:
    $ 56.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical SummaryThe design of topological materials is attracting enormous research attention due to the possibility of accessing novel and exotic physical phenomena such as Mott transitions, high-temperature superconductivity, topological insulators, colossal magnetoresistance, and giant magneto-electric effects, which can be used to achieve dissipation-less quantum electronic states. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, Prof. Luisa Whitakker-Brooks and her group at the University of Utah will investigate and address the challenges associated with the synthesis and crystallinity of 2D coordination polymers (2DCPs) for their potential application as topological materials. The aim is to develop synthetic routes and self-assembly strategies that can lead to defect-free 2DCP thin films with controlled crystallinity over large areas. As such, by combining computational simulations and experimental techniques, the research aims to identify the kinetic bottlenecks that contribute to defect formation during the synthesis of 2DCPs. This integrated approach provides a comprehensive understanding of the factors influencing the formation and properties of 2DCPs, not only benefiting the targeted materials but also potentially contributing to the broader family of 2DCPs. Additionally, the research project aims to create a database of electronic structures and predicted quantum properties comprising 2DCPs. This database will contribute to the understanding and characterization of 2DCPs and can serve as a valuable resource for future studies in quantum electronics. The broader community is engaged by executing two outreach activities: (1) “De la Mano de la Ciencia en el Valle” (translation: Science Frontiers in the Valley) seminar series as a means to promote and share cutting-edge science results with the Hispanic population in the Utah Valley and (2) Training high-school teachers and aiding in the development of teaching curricula through participation in the Master of Science for Secondary School Teacher (MSSST) program at the University of Utah. The latter allow for training teachers and students on materials synthesis and device fabrication to strengthen the microelectronic workforce.Technical SummaryCrystalline 2D coordination polymers (2DCPs) have been predicted to be topological materials, including quantum spin/anomalous Hall insulators, topological flat bands and superconductors with a range of electromagnetic properties essential for the realization of novel quantum information systems. 2DCPs provide a tunable material platform wherein the molecular structure of building blocks and the geometry of the crystals they form can be designed using methods of organic chemistry. However, experimental studies of these materials have so far failed to confirm their predicted quantum properties. The main reason for the disappointing performance of 2DCPs as topological materials is their poor crystallinity. If the potential of 2DCPs as topological materials is to be realized, synthetic routes to thin films with markedly improved crystallinity need to be found. This project, supported by the Solid State and Materials Chemistry program in the NSF’s Division of Materials Research, seeks to identify the microscopic kinetic bottlenecks that lead to defect formation in the synthesis of 2DCPs with an integrated computational and experimental approach. The generated insight into defect formation processes is applied to develop new self-assembly strategies that allow the formation of 2DCP thin films that are defect-free over length scales exceeding tens of microns, thus unlocking their theoretical potential as topological materials. The benefits and outcomes of the proposed research efforts include (1) The development of synthetic protocols that allow for the fabrication of large-area, highly oriented 2DCP thin films with controlled defect states; (2) The creation of a database of electronic structures and predicted quantum properties of proposed 2DCPs; (3) Formulation of self-assembly strategies backed by molecular dynamics simulations and experimental data with potential application to the broader family of 2DCPs; and (4) Elucidation of electronic, thermal, and optical properties of proposed 2DCPs with a route to their application in quantum information science. The synthesis-characterization-device physics protocols proposed in this research program define the toolbox that allow us to fulfill the goal of rational materials design towards quantum electronic technologies. The knowledge gained and tools developed benefit parallel fields investigating n-type organic materials for light-emitting diodes, thin-film transistors, and photovoltaics. This research project provides unique cross-disciplinary training in materials chemistry and device fabrication to graduate and undergraduate students as well as high-school students and teachers with a closely mentored professional experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要拓扑材料的设计引起了巨大的研究关注,因为有可能访问新颖和外来的物理现象,例如Mott过渡,高温超导性,拓扑绝缘子,巨大的磁化剂,巨大的磁磁性和巨型磁磁效应,这些效应可用于实现销售量子量的量化量子,以实现销售量的量子。在材料研究部的固态和材料化学计划的支持下,Luisa Whitaker-Brooks教授及其在犹他大学的小组将调查并解决与2D配位聚合物(2DCPS)的合成和结晶性相关的挑战,以便其作为拓扑材料的潜在应用。目的是制定合成路线和自组装策略,这些策略可以导致无缺陷的2DCP薄膜,在大面积上具有控制的结晶度。因此,通过结合计算模拟和实验技术,该研究旨在确定在合成2DCP期间有助于缺陷形成的动力学瓶颈。这种综合方法提供了对这些因素影响2DCP的形成和特性的全面理解,不仅使目标材料受益,而且有可能为更广泛的2DCP家族做出贡献。此外,研究项目旨在创建一个电子结构数据库,并预测完成2DCP的量子性能。该数据库将有助于对2DCP的理解和表征,并可以作为量子电子研究未来研究的宝贵资源。更广泛的社区通过执行两项宣传活动来参与:(1)“德拉马诺·德·塞西亚·恩瓦利河谷”(翻译:山谷中的科学领域)节目系列系列,作为促进和共享尖端科学成绩与犹他州谷中的西班牙裔人口的尖端科学成绩犹他大学。后来允许培训教师和学生就材料合成和设备制造进行培训,以增强微电源劳动力。技术摘要汇总crystalline 2D配位聚合物(2DCP)被预测为拓扑材料,2DCP是可调的材料平台,其中构成了构建块的分子结构,可以使用构建块的分子结构,以形成构造构造的构造和晶体的化学。但是,到目前为止,对这些材料的实验研究未能确认其预测的量子性能。 2DCP作为拓扑材料的令人失望的性能令人失望的主要原因是它们的结晶度差。如果要实现2DCP作为拓扑材料的潜力,则需要发现与具有明显改善结晶度的薄膜的合成路线。该项目得到了NSF材料研究部的固态和材料化学计划的支持,旨在识别微观的动力学瓶颈,这些微观动力学瓶颈在与综合计算和实验方法合成的2DCP中导致缺陷形成。对缺陷形成过程产生的洞察力用于制定新的自组装策略,这些策略允许形成2DCP薄膜,这些薄膜在长度超过数十万微米的长度上无缺陷,从而将其理论潜力作为拓扑材料释放。拟议的研究工作的好处和结果包括(1)制定合成方案,这些方案允许制造具有控制缺陷状态的大区域,高度定向的2DCP薄膜; (2)创建电子结构数据库和所提出的2DCP的量子性能; (3)由分子动力学模拟和实验数据支持的自组装策略的形成,并可能应用于更广泛的2DCP家族; (4)阐明了拟议2DCP的电子,热和光学性质,并在量子信息科学中应用了其应用。本研究计划中提出的合成特征设备物理方案定义了工具箱,该工具箱使我们能够实现对量子电子技术的理性材料设计的目标。获得的知识和工具开发了利益的平行场,研究了发光二极管,薄膜晶体管和光伏的N型有机材料。该研究项目为研究生和本科生提供了独特的跨学科培训,以及具有密切相关的专业经验的高中生和老师。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luisa Whittaker-Brooks其他文献

Luisa Whittaker-Brooks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luisa Whittaker-Brooks', 18)}}的其他基金

Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
CAS: Magnetic moment-induced adaptability of vertically-oriented 1D electrochemical systems
CAS:垂直定向一维电化学系统的磁矩诱导适应性
  • 批准号:
    2203926
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a laboratory beamline small (wide)-angle X-ray scattering tool for in-situ characterization of (bio)materials
MRI:获取实验室光束线小(广角)角度 X 射线散射工具,用于(生物)材料的原位表征
  • 批准号:
    2018413
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
Developing in operando structure-property-function guidelines for small molecule organic electron acceptors and its implication on device performance and charge carrier mobility
小分子有机电子受体的操作结构-性能-功能指南的开发及其对器件性能和载流子迁移率的影响
  • 批准号:
    2016191
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
EAGER: manipulating spin dynamics in thionated perylene diimide organic semiconductors: towards organic spin caloritronic devices
EAGER:操纵硫代苝二酰亚胺有机半导体中的自旋动力学:走向有机自旋热电子器件
  • 批准号:
    1824263
  • 财政年份:
    2018
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
    12104186
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing controlled release immune complexes to treat multiple sclerosis
开发控释免疫复合物来治疗多发性硬化症
  • 批准号:
    10679346
  • 财政年份:
    2023
  • 资助金额:
    $ 56.92万
  • 项目类别:
Novel HCV vaccine antigens and nanoparticles
新型 HCV 疫苗抗原和纳米颗粒
  • 批准号:
    10557879
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing DNA-Based Molecular Robots
开发基于 DNA 的分子机器人
  • 批准号:
    10630190
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing a screening platform to identify inhibitors of pathological self-assembly of Tau
开发筛选平台来鉴定 Tau 病理性自组装抑制剂
  • 批准号:
    10323679
  • 财政年份:
    2021
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing a Multi-epitope Pan-Coronavirus Vaccine
开发多表位泛冠状病毒疫苗
  • 批准号:
    10669702
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了