Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models

合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用

基本信息

  • 批准号:
    1818684
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project will significantly contribute toward development of computational methods for shallow water and related models and will provide considerably more powerful tools for studying a variety of water waves and atmospheric phenomena. Special attention will be paid to applications arising in oceanography, atmospheric sciences, hydraulic, coastal, civil engineering, in which rapid changes in the bottom topography, Coriolis forces, friction, multiscale regimes, and uncertain phenomena factor heavily. The studied problems will include shallow water flows in multi-connected river channel systems, tsunami wave propagation and low Froude regime shallow water models, dynamics models of tropical cyclones and clouds with uncertain data.The newly developed tools may have a great potential in designing coastal protection systems and investigating the effects of sediment transport on shelf drilling platforms as well as contributing to a better prediction of tropical cyclones trajectories and tsunami wave propagation and on-shore arrival.The project focuses on development of new structure preserving numerical methods for hyperbolic balance laws with applications to shallow water equations and related models. Shallow water models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. Naturally, these applications, especially in cases of high space dimensions, require development and implementation of special numerical methods that are not only consistent with the governing system of PDEs, but also preserve certain structural and asymptotic properties of the underlying problem at the discrete level. The development of new numerical techniques will be based on high-order shock-capturing finite-volume schemes, asymptotic preserving, adaptive moving mesh and stochastic Galerkin methods utilizing major advantages of each one of these methods in the context of studied problems. Besides providing examples that corroborate the numerical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将极大地促进浅水计算方法和相关模型的发展,并将为研究各种水波和大气现象提供更强大的工具。将特别关注海洋学、大气科学、水利、海岸、土木工程中出现的应用,其中底部地形、科里奥利力、摩擦力、多尺度状态和不确定现象的快速变化是重要因素。研究的问题将包括多连接河道系统中的浅水流、海啸波传播和低弗劳德政权浅水模型、热带气旋和具有不确定数据的云的动力学模型。新开发的工具在沿海设计方面可能具有巨大潜力保护系统并研究沉积物输送对陆架钻井平台的影响,并有助于更好地预测热带气旋轨迹、海啸波传播和岸上到达。该项目重点开发双曲平衡定律的新结构保存数值方法及其在浅水方程和相关模型中的应用。浅水模型是依赖于时间的偏微分方程 (PDE) 系统,这些方程是使用质量和动量守恒以及静水或正压近似等物理特性导出的。当然,这些应用,特别是在高空间维度的情况下,需要开发和实施特殊的数值方法,这些方法不仅与偏微分方程的控制系统一致,而且在离散水平上保留潜在问题的某些结构和渐近性质。新数值技术的开发将基于高阶冲击捕获有限体积方案、渐进保持、自适应移动网格和随机伽辽金方法,在研究问题的背景下利用这些方法中每一种方法的主要优点。除了提供证实数值方法的例子外,上述应用对于当今科学中出现的广泛问题具有重大的独立价值。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Characteristic Decomposition Based Central-Upwind Scheme
  • DOI:
    10.1016/j.jcp.2022.111718
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
  • 通讯作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
  • DOI:
    10.1016/j.jcp.2019.04.035
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Liu;Alina Chertock;A. Kurganov
  • 通讯作者:
    Xin Liu;Alina Chertock;A. Kurganov
Well-balanced numerical method for atmospheric flow equations with gravity
  • DOI:
    10.1016/j.amc.2022.127587
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
  • 通讯作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
Denoising convolution algorithms and applications to SAR signal processing
去噪卷积算法及其在SAR信号处理中的应用
  • DOI:
    10.3934/cac.2023008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chertock, Alina;Leonard, Chris;Tsynkov, Semyon;Utyuzhnikov, Sergey
  • 通讯作者:
    Utyuzhnikov, Sergey
A diffuse-domain-based numerical method for a chemotaxis-fluid model
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Chertock其他文献

A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
  • DOI:
    10.1016/bs.hna.2016.11.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock
  • 通讯作者:
    Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
  • 通讯作者:
    Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
  • DOI:
    10.1007/s10915-019-00947-w
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
  • 通讯作者:
    Alina Chertock
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
  • DOI:
    10.1016/j.jcp.2017.01.030
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;P. Degond;J. Neusser
  • 通讯作者:
    J. Neusser
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
  • DOI:
    10.1007/s10915-008-9242-4
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Alina Chertock;D. Gottlieb;A. Solomonoff
  • 通讯作者:
    A. Solomonoff

Alina Chertock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Chertock', 18)}}的其他基金

Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
  • 批准号:
    2208438
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521051
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216974
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115682
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
  • 批准号:
    0712898
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
  • 批准号:
    0410023
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

“铠甲”催化剂电子结构调控及稳定催化硫还原反应机理研究
  • 批准号:
    52302243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于一维线性结构的氟化电解质设计及在固态高压锂金属电池中的性能研究
  • 批准号:
    52302083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316136
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316137
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了