Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models

合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用

基本信息

  • 批准号:
    1818684
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project will significantly contribute toward development of computational methods for shallow water and related models and will provide considerably more powerful tools for studying a variety of water waves and atmospheric phenomena. Special attention will be paid to applications arising in oceanography, atmospheric sciences, hydraulic, coastal, civil engineering, in which rapid changes in the bottom topography, Coriolis forces, friction, multiscale regimes, and uncertain phenomena factor heavily. The studied problems will include shallow water flows in multi-connected river channel systems, tsunami wave propagation and low Froude regime shallow water models, dynamics models of tropical cyclones and clouds with uncertain data.The newly developed tools may have a great potential in designing coastal protection systems and investigating the effects of sediment transport on shelf drilling platforms as well as contributing to a better prediction of tropical cyclones trajectories and tsunami wave propagation and on-shore arrival.The project focuses on development of new structure preserving numerical methods for hyperbolic balance laws with applications to shallow water equations and related models. Shallow water models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. Naturally, these applications, especially in cases of high space dimensions, require development and implementation of special numerical methods that are not only consistent with the governing system of PDEs, but also preserve certain structural and asymptotic properties of the underlying problem at the discrete level. The development of new numerical techniques will be based on high-order shock-capturing finite-volume schemes, asymptotic preserving, adaptive moving mesh and stochastic Galerkin methods utilizing major advantages of each one of these methods in the context of studied problems. Besides providing examples that corroborate the numerical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将有助于开发浅水和相关模型的计算方法,并为研究各种水波和大气现象提供更大的工具。将特别关注海洋学,大气科学,液压,沿海,土木工程的应用,其中底部地形,科里奥利部队,摩擦,多尺度制度以及不确定现象因素的快速变化在很大程度上变化。所研究的问题将包括多种连接的河道系统中的浅水流,海啸传播和低弗鲁德政权浅水模型,具有不确定数据的热带气旋的动态模型和云的动态模型。新开发的工具可能在设计沿海保护系统以及对Sepiment cy的效果以及对Shelf钻机的效果以及贡献效果以及贡献效果的效果方面具有很大的潜力。该项目着重于开发新结构,以保存新结构,以保存用于双曲线平衡定律的新结构,并应用于浅水方程和相关模型。浅水模型是使用物理特性(例如质量和动量保存)以及静水或压缩近似值等物理特性得出的时间依赖性部分微分方程(PDE)的系统。自然,这些应用程序,尤其是在高空间维度的情况下,需要开发和实施特殊的数值方法,这些方法不仅与PDE的管理系统一致,而且还需要在离散级别保留基本问题的某些结构和渐近性。新数值技术的开发将基于高阶冲击捕获有限量 - 体积方案,渐近保存,适应性移动网格和随机的盖金方法,利用了研究问题的上下文中每种方法的主要优势。除了提供证实数值方法的示例外,上述应用程序对于当今科学中引起的广泛问题具有实质性的独立价值。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Characteristic Decomposition Based Central-Upwind Scheme
  • DOI:
    10.1016/j.jcp.2022.111718
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
  • 通讯作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
  • DOI:
    10.1016/j.jcp.2019.04.035
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Liu;Alina Chertock;A. Kurganov
  • 通讯作者:
    Xin Liu;Alina Chertock;A. Kurganov
Well-balanced numerical method for atmospheric flow equations with gravity
  • DOI:
    10.1016/j.amc.2022.127587
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
  • 通讯作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
Denoising convolution algorithms and applications to SAR signal processing
去噪卷积算法及其在SAR信号处理中的应用
  • DOI:
    10.3934/cac.2023008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chertock, Alina;Leonard, Chris;Tsynkov, Semyon;Utyuzhnikov, Sergey
  • 通讯作者:
    Utyuzhnikov, Sergey
A diffuse-domain-based numerical method for a chemotaxis-fluid model
共 11 条
  • 1
  • 2
  • 3
前往

Alina Chertock其他文献

A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
  • DOI:
  • 发表时间:
    2013
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
  • 通讯作者:
    Terrance Pendleton
    Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
  • DOI:
    10.1007/s10915-019-00947-w
    10.1007/s10915-019-00947-w
  • 发表时间:
    2019-04
    2019-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
  • 通讯作者:
    Alina Chertock
    Alina Chertock
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
  • DOI:
    10.1016/j.jcp.2017.01.030
    10.1016/j.jcp.2017.01.030
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;P. Degond;J. Neusser
    Alina Chertock;P. Degond;J. Neusser
  • 通讯作者:
    J. Neusser
    J. Neusser
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
共 12 条
  • 1
  • 2
  • 3
前往

Alina Chertock的其他基金

Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
  • 批准号:
    2208438
    2208438
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521051
    1521051
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216974
    1216974
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115682
    1115682
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
  • 批准号:
    0712898
    0712898
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
  • 批准号:
    0410023
    0410023
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
面向航空弱刚性结构装配的人-多机器人共融协作机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向航空弱刚性结构装配的人-多机器人共融协作机制研究
  • 批准号:
    52205017
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向结构化环境的多机器人协作信息趋向气味溯源方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向结构化环境的多机器人协作信息趋向气味溯源方法研究
  • 批准号:
    62103122
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316136
    2316136
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
  • 批准号:
    2316137
    2316137
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别: