Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
基本信息
- 批准号:2400353
- 负责人:
- 金额:$ 6.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionAny owner of a mobile phone or laptop computer knows how hot they can get when being used. This is why electronic devices are engineered to shed heat and reduce the temperature under operation. This problem is critical at the nanoscale, where it is necessary to control thermal conduction at boundaries between different materials and components. Consider two-dimensional (2D) materials such as graphene, which have shown great promise. These consist of layers of atoms that are tightly bound in the plane and weakly bound between layers. If heat cannot be efficiently transported between layers, there would be significant limits to the use of 2D materials in next generation electronics. On the other hand, a strong thermal boundary could provide the potential for remarkable materials with thermal isolation better than air. The need to understand and control thermal boundary conductance at 2D-2D interfaces and between 2D and bulk materials motivates this project. Investigators will manipulate the thermal properties of 2D materials through changes in their interface structure and chemistry. Investigators will study how to control physical coupling and the effect of novel heat transfer mechanisms. An integral part of this project will be to develop experiential education programs for underrepresented students at the University of Texas at Dallas, the Carnegie Institute of Washington, and local high schools and community colleges. The researchers will work with local museums to develop new artwork conservation programs using optical techniques such as Raman spectroscopy.Technical DescriptionA major gap in the present knowledge of thermal boundary conductance (TBC) is how it can be manipulated by changing the structure of 2D-2D and 2D-bulk interfaces. As these interfaces are often set when the sample is fabricated, only a subset of structure-property relationships has been investigated, and often across disparate samples subject to the variation common to 2D materials. This project is applying extreme pressure within a diamond anvil cell as a new technique for broadly changing the structure of the same interface while measuring the TBC. This is allowing researchers to decode fundamental knowledge on the structure-property relationships for the TBC while also gaining insights into practical pathways for manipulating the thermal properties of 2D materials and thermal limitations of 2D devices. Specific structural and chemical changes at the interface include (1) the increase of physical coupling, (2) the transition from nonbonded to bonded chemistry, and (3) the onset of new phononic and nonphononic heat transfer mechanisms. Raman spectroscopy at optical wavelengths is being used to simultaneously characterize the interface and measure the TBC. The measurements are backed by first-principles modeling and molecular dynamics simulations. In addition to the TBC, these models are allowing researchers to identify renormalizations of the phonon dispersion and scattering, which can affect many phonon-limited areas of energy transport and conversion in 2D materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述手机或笔记本电脑的所有者都知道使用时会变得有多热。这就是为什么电子设备被设计为散热并降低运行中的温度的原因。在纳米级,此问题至关重要,在纳米级,必须在不同材料和组件之间的边界上控制热传导。考虑二维(2D)材料,例如石墨烯,这些材料表现出了很大的希望。这些由紧密结合的原子层组成,层之间弱结合。如果不能在层之间有效运输热量,则在下一代电子中使用2D材料将有很大的限制。另一方面,强烈的热边界可以为具有比空气更好的热隔离的显着材料提供潜力。在2D-2D接口以及2D和批量材料之间了解和控制热边界电导的需求激发了该项目。研究人员将通过改变其界面结构和化学的变化来操纵2D材料的热性能。研究人员将研究如何控制物理耦合以及新型传热机制的影响。该项目不可或缺的一部分是为德克萨斯大学达拉斯大学,华盛顿卡内基研究所以及当地的高中和社区学院开发代表性不足的学生的体验教育计划。研究人员将与当地博物馆合作,使用光学技术等光学技术开发新的艺术品保护计划。技术描述在当前的热边界电导知识(TBC)中的主要差距是如何通过更改2D-2d和2d-bulk接口的结构来操纵它。由于这些界面通常是在制造样品时设置的,因此仅研究了结构 - 特性关系的一部分,并且通常跨越不同的样品,但要受2D材料常见的变化。该项目正在在钻石砧室内施加极端压力,作为一种新技术,用于在测量TBC时广泛改变相同界面的结构。这使研究人员能够解释有关TBC结构 - 质地关系的基本知识,同时还可以深入了解操纵2D材料的热性能和2D设备的热限制的实用途径。界面处的特定结构和化学变化包括(1)物理耦合的增加,(2)从非键向键为键化学的过渡,以及(3)新的语音和非语音传热机制的发作。光波长处的拉曼光谱法被用来同时表征界面并测量TBC。测量由第一原理建模和分子动力学模拟支持。除TBC外,这些模型还允许研究人员识别声子分散和散射的重态度,这可能会影响2D材料中的许多声子限制的能量运输和转换领域。这项奖项反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响的评估来审查CRITERIA的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Goncharov其他文献
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
Mityagin's extension problem. Progress report
- DOI:
10.1016/j.jmaa.2016.11.001 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Zeliha Ural - 通讯作者:
Zeliha Ural
Alexander Goncharov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Goncharov', 18)}}的其他基金
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
- 批准号:
2049127 - 财政年份:2021
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
- 批准号:
1900743 - 财政年份:2019
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
- 批准号:
1763287 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
- 批准号:
1564385 - 财政年份:2016
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
- 批准号:
1531583 - 财政年份:2015
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
- 批准号:
1520648 - 财政年份:2015
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
- 批准号:
1128867 - 财政年份:2013
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
- 批准号:
1301776 - 财政年份:2013
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
相似国自然基金
压力耐受操纵子ter在高毒力肺炎克雷伯菌中的传播机制及适应性研究
- 批准号:32300156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖原代谢操纵子glgBXCAP调控福氏志贺菌抗逆和致病的分子机制研究
- 批准号:82372258
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可调制长周期外场诱导的强关联系统中量子态的探测与操纵研究
- 批准号:12305026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腐烂病菌效应蛋白VmHEP1操纵苹果胞外蛋白MdLRRP1介导的感病机制研究
- 批准号:32330089
- 批准年份:2023
- 资助金额:219 万元
- 项目类别:重点项目
pyr操纵子调控粪肠球菌与具核梭杆菌相互作用的分子机制研究
- 批准号:82301054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1804843 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1805307 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant