Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques

通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率

基本信息

  • 批准号:
    1763287
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-15 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Knowledge of thermal conductivity of the Earth's mantle and core materials under extreme conditions is important for understanding the physical and chemical processes and their evolution in the Earth. Sustained heat transport through the mantle is crucial for the existence and stability of the Earth's magnetic field. The Earth's mantle dynamics depends on the rate of heat transfer by convection, conduction, and radiation, and understanding these processes requires knowledge on the conductive and radiative parts of thermal conductivity. The investigators will conduct measurements of the conductive and radiative parts of thermal conductivity at extreme conditions of pressure and temperature that are relevant for the Earth's deep interior. The laser techniques developed in this work will advance other fields, which benefit from knowledge of thermal conductivity under extremes, for example various energy applications. A range of students, including area high school students, undergraduates, graduate students, and postdoctoral associates, will benefit from high-quality scientific training at Carnegie that will be provided by participation in the cutting-edge science that will be developed in the course of this work. The investigators will determine the thermal conductivity of the Earth's key minerals under high pressure and high temperature conditions (up to 150 GPa and 6000 K) by using pump-probe pulsed laser techniques. To determine the lattice thermal conductivity, they will measure the heat flux histories across the sample using time- and spatially- resolved spectroradiometry and/or time-domain thermoreflectance. To infer the radiative thermal conductivity, the team will study the optical spectra of these mantle minerals in the ultraviolet-to-infrared spectral range. They will apply the time-resolved emission and optical broad band spectroscopy tools that they have previously developed including pulsed white laser (supercontinuum) in combination with time-resolved multichannel detectors (streak camera and intensified CCD). The experiments will be performed on Fe and Fe-rich alloys, high-quality geologically relevant samples pre-synthesized at high P-T condition in large-volume devices (e.g. single crystals of bridgmanite), silicate and oxide melts, and planetary ices. These high P-T experimental data will enable a direct estimate of the radiative and conduction parts of the thermal conductivity of the Earth's mantle and core. These measurements will elucidate complex laws which govern thermal conductivity in the deep interior and reach sufficient accuracy to critically improve existing planetary models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在极端条件下,了解地球地幔和核心材料的热导率的知识对于理解物理和化学过程及其在地球中的演变很重要。通过地幔的持续热传输对于地球磁场的存在和稳定性至关重要。地球的地幔动力学取决于对流,传导和辐射的传热速率,并且理解这些过程需要有关导热率的导电和辐射部位的知识。研究人员将在压力和温度的极端条件下对导热性的导电和辐射部分进行测量,这与地球深内部相关。这项工作中开发的激光技术将推进其他领域,这些领域受益于极端下的导热性知识,例如各种能源应用。包括地区高中生,本科生,研究生和博士后同事在内的一系列学生将受益于卡内基的高质量科学培训,这将通过参与这项工作的尖端科学提供。研究人员将通过使用泵送脉冲激​​光技术在高压和高温条件下(高度高温和6000 K)在高压和高温条件下(高达150 GPA和6000 K)的热导率。为了确定晶格的导热率,它们将使用时间和空间分辨的光谱法和/或时间域的热心构仪测量样品跨样品的热通量历史。为了推断辐射导热率,该团队将研究这些地幔矿物的光谱在紫外线到边缘光谱范围内。他们将应用以前开发的时间分辨发射和光宽带光谱工具,包括脉冲白色激光器(SuperContinuum)与时间分辨的多通道检测器(条纹摄像头和加强CCD)结合使用。这些实验将在Fe和Fe丰富的合金上进行,高质量的地质相关样品在大容量设备(例如Bridgmanite的单晶),硅酸盐和氧化物融化和星球层的高p-T条件下预先合成。这些高的P-T实验数据将可以直接估计地球和核心的热导率的辐射和传导部分。这些测量结果将阐明复杂的法律,该法律控制着深层内部的热导率,并达到足够的准确性,以批判性地改善了现有的行星模型。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点评估和更广泛的影响来进行评估的审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiative thermal conductivity of single-crystal bridgmanite at the core-mantle boundary with implications for thermal evolution of the Earth
核幔边界处单晶桥锰矿的辐射热导率对地球热演化的影响
  • DOI:
    10.1016/j.epsl.2021.117329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Murakami Motohiko;Goncharov Alexander F.;Miyajima Nobuyoshi;Yamazaki Daisuke;Holtgrewe Nicholas
  • 通讯作者:
    Holtgrewe Nicholas
Raman spectroscopy on hydrogenated graphene under high pressure
  • DOI:
    10.1016/j.carbon.2019.09.077
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Pakornchote, Teerachote;Geballe, Zachary M.;Goncharov, Alexander F.
  • 通讯作者:
    Goncharov, Alexander F.
Thermal conductivity near the bottom of the Earth's lower mantle: Measurements of pyrolite up to 120 GPa and 2500 K
  • DOI:
    10.1016/j.epsl.2020.116161
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Z. Geballe;N. Sime;J. Badro;P. V. van Keken;A. Goncharov
  • 通讯作者:
    Z. Geballe;N. Sime;J. Badro;P. V. van Keken;A. Goncharov
Helium-hydrogen immiscibility at high pressures
高压下氦-氢不混溶
  • DOI:
    10.1063/1.5086270
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Wang;Xiao Zhang;Shuqing Jiang;Zachary M. Geballe;Teerachote Pakornchote;Maddury Somayazulu;Vitali B. Prakapenka;Eran Greenberg;Alex;er F. Goncharov
  • 通讯作者:
    er F. Goncharov
Blocked radiative heat transport in the hot pyrolitic lower mantle
  • DOI:
    10.1016/j.epsl.2020.116176
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    S. Lobanov;N. Holtgrewe;G. Ito;J. Badro;H. Piet;F. Nabiei;Jung‐Fu Lin;L. Bayarjargal;R. Wirth;A. Schreiber;A. Goncharov
  • 通讯作者:
    S. Lobanov;N. Holtgrewe;G. Ito;J. Badro;H. Piet;F. Nabiei;Jung‐Fu Lin;L. Bayarjargal;R. Wirth;A. Schreiber;A. Goncharov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Goncharov其他文献

Donaldson–Thomas transformations of moduli spaces of G-local systems
  • DOI:
    10.1016/j.aim.2017.06.017
  • 发表时间:
    2018-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Goncharov;Linhui Shen
  • 通讯作者:
    Linhui Shen
Mityagin's extension problem. Progress report
  • DOI:
    10.1016/j.jmaa.2016.11.001
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Goncharov;Zeliha Ural
  • 通讯作者:
    Zeliha Ural

Alexander Goncharov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Goncharov', 18)}}的其他基金

Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
  • 批准号:
    2049127
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
  • 批准号:
    1900743
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
  • 批准号:
    1564385
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
  • 批准号:
    1531583
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
  • 批准号:
    1128867
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
  • 批准号:
    1301776
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似国自然基金

兼具高室温离子电导率和优异机械性能的复合固态电解质制备及离子传输机制研究
  • 批准号:
    22305255
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
聚偏氟乙烯基固态电解质共晶及取向无定形结构调控及离子电导率研究
  • 批准号:
    52373040
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高温高压下含水、含铁单斜辉石晶体结构和电导率研究
  • 批准号:
    42302047
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超临界地热流体水岩作用过程及电导率演化规律
  • 批准号:
    42372301
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
双极膜介导的电催化体系对低电导率水中卤代抗生素去除机理研究
  • 批准号:
    52300084
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Optical Study of Thermal conductivity of Deep Earth's Materials at High Pressure and Temperature
高温高压下地球深部材料热导率的光学研究
  • 批准号:
    1015239
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Thermal conductivity measurements of deep Earth materials under high pressure
高压下地球深层材料的热导率测量
  • 批准号:
    21540444
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of Deep Brain Stimulation: Joule Heating and Electroporation
深部脑刺激机制:焦耳加热和电穿孔
  • 批准号:
    7197377
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
Measurements of Thermal Conductivity of Deep Earth Minerals
地球深部矿物热导率的测量
  • 批准号:
    0510914
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了