Innovative Numerical Methods for Nonlinear Time-Dependent PDEs

非线性瞬态偏微分方程的创新数值方法

基本信息

  • 批准号:
    0712898
  • 负责人:
  • 金额:
    $ 27.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

The project is aimed at developing accurate, efficient, and robust numerical methods for nonlinear PDEs, with particular reference to problems that admit nonsmooth (discontinuous) solutions and problems that involve highly disparate scales, and therefore, are difficult to solve numerically. The principal part of the proposed research will be focused on the development of new techniques for solving problems involving complicated nonlinear wave phenomena, problems with complex computational domains, moving boundaries and material/layer interfaces, as well as problems that include uncertain phenomena. The new techniques will be based on particle methodsand finite-volume methods, as well as their hybridization. The latter approach will utilize major advantages of particle methods, as mesh-free methods, and shock-capturing finite-volume methods, especially in problems with complex geometries, free boundaries, and flows with structural interactions. A combination of stochastic and numerical tools will also be used for solving problems with uncertainties and problems, in which multiple scales should be taken into account. The designed methods will be applied to a variety of nonlinear problems, among which are the Euler-Poincare equations, multi-phase and multi-fluid flow models, models of transport of pollutant in turbulent incompressible flow, chemotaxis models, reactive Euler equations describing stiff detonation waves, zero diffusion-dispersion limits for conservation laws, and others. Stochastic initial-value problems such as the randomly perturbed KdV equation and the Burgers equation with random force will also be solved by the proposed methods. It is significant that, besides providing the examples that corroborate the analytical approach, the foregoing applications are of a substantial independent value for a broad class of problems arisingin modern science. In recent years, numerical methods for solving partial differential equations have evolved into an important and extremely efficient tool for the quantitative and qualitative study of many phenomena in different applied ares that otherwise could not have been studied at all. The proposed project will contribute significantly toward development of computational methods and will provide considerably more powerful tools for analyzing applied problems on the computer. In this proposal, a strong accent is put on designing numerical methods for complicated problems such as multi-phase and multi-fluid models, models of pollution propagation, polymer systems, chemotaxis models, active fluid transport models, multi-scale and stochastic initial-value problems, etc. These problems arise in a variety of scientific applicationsin fluid and gas dynamics, geophysics, meteorology, astrophysics, multi-component flows, granular flows, reactive flows, polymer flows, and other fields. A wide spectrum of applications of the studied methods reflects also the interdisciplinary character of the proposed project.
该项目旨在为非线性PDE开发准确,高效且鲁棒的数值方法,特别是提及涉及非平滑(不连续的)解决方案和问题的问题,涉及高度分散的尺度,因此很难在数值上求解。拟议研究的主要部分将集中于解决涉及复杂非线性波现象的新技术的发展,复杂的计算领域的问题,移动边界和材料/层界面以及包括不确定现象的问题。新技术将基于粒子方法和有限体积方法及其杂交。后一种方法将利用粒子方法的主要优势作为无网状方法和捕捉有限体积的方法,尤其是在复杂几何,自由边界和结构相互作用的流动问题中。随机工具和数值工具的组合也将用于解决不确定性和问题的问题,其中应考虑多个量表。该设计的方法将应用于各种非线性问题,其中包括Euler-Poincare方程,多相和多流体流量模型,在湍流不可压缩流中污染物的传输模型,趋化性模型,反应性Euler方程描述了僵硬的衰减波,零散射范围,零扩散 - 散布局部限制范围的保护范围,以及其他。随机的初始值问题,例如随机扰动的KDV方程和带有随机力的汉堡方程,也将通过提出的方法解决。重要的是,除了提供证实分析方法的示例外,上述应用对于在现代科学中引起的广泛问题具有实质性的独立价值。近年来,解决部分微分方程的数值方法已演变为一种重要且极其有效的工具,用于在不同应用的ARE中对许多现象进行定量和定性研究,否则根本无法研究这些方法。拟议的项目将有助于开发计算方法,并将为分析计算机上的应用问题提供更强大的工具。在该提案中,在设计数字方法上的强烈重音是为复杂问题(例如多相和多流体模型,污染传播的模型,聚合物系统,聚合物系统,趋化模型,主动流体传输模型,多规模和随机的初始价值问题等)的设计。多组分流,颗粒流,反应性流动,聚合物流和其他领域。研究方法的广泛应用也反映了拟议项目的跨学科特征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Chertock其他文献

A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
  • DOI:
    10.1016/bs.hna.2016.11.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock
  • 通讯作者:
    Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
  • 通讯作者:
    Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
  • DOI:
    10.1007/s10915-019-00947-w
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
  • 通讯作者:
    Alina Chertock
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
  • DOI:
    10.1016/j.jcp.2017.01.030
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;P. Degond;J. Neusser
  • 通讯作者:
    J. Neusser
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
  • DOI:
    10.1007/s10915-008-9242-4
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Alina Chertock;D. Gottlieb;A. Solomonoff
  • 通讯作者:
    A. Solomonoff

Alina Chertock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Chertock', 18)}}的其他基金

Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
  • 批准号:
    2208438
  • 财政年份:
    2022
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818684
  • 财政年份:
    2018
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521051
  • 财政年份:
    2015
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216974
  • 财政年份:
    2012
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115682
  • 财政年份:
    2011
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
  • 批准号:
    0410023
  • 财政年份:
    2004
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant

相似国自然基金

双区域自然对流耦合模型的高效数值方法研究
  • 批准号:
    12361077
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
  • 批准号:
    52374055
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
  • 批准号:
    12301469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
  • 批准号:
    52309135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovative Numerical Methods for High-Dimensional Applications
高维应用的创新数值方法
  • 批准号:
    2012286
  • 财政年份:
    2020
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Continuing Grant
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2019
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2018
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Discovery Grants Program - Individual
FORMALISATION AND NUMERICAL IMPLEMENTATION OF INNOVATIVE METHODS TO DESIGN MECHANICAL ASSEMBLIES AGAINST FATIGUE
抗疲劳机械组件设计创新方法的形式化和数值实现
  • 批准号:
    1939692
  • 财政年份:
    2017
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Studentship
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2017
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了