NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge

NeTS:小型:机器学习遇见无线网络优化:探索潜在知识

基本信息

  • 批准号:
    1816908
  • 负责人:
  • 金额:
    $ 41.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning has been widely applied in various areas including wireless networking. While the capability of machine learning in classification and pattern recognition has been widely accepted, the role it can play on fundamental research issues in wireless networks is yet to be explored. With the proliferation of heterogeneous networking, wireless network optimization has seen a tremendous increase in problem size and complexity, calling for a paradigm of efficient computation. This project aims at a pioneering study on how to exploit deep learning for significant performance gain in wireless network optimization. Innovative techniques are to be developed for extracting latent knowledge from historical optimization instances, and such knowledge will be leveraged to greatly mitigate the computation complexity in solving new optimization problems. The proposed research seamlessly integrates studies in the areas of optimization, machine learning, graph theory, and wireless networking. This interdisciplinary research will not only provide various training projects to undergraduate and graduate students, but also inspire students to pursue high-quality research with an open-minded and cross-disciplinary perspective. Outcomes from this project may directly benefit the industry with low-complexity yet efficient resource allocation algorithms in practical wireless networks. This project is expected to contribute a series of new insights and innovative methods in integrating machine learning with wireless network optimization. This study will reveal that properly trained machine learning algorithms can smartly identify critical features (in terms of a small set of critical links or transmission patterns) that lead to optimal or close-to-optimal solutions. The traditional learning framework for data classification cannot be easily tailored for exposing the latent knowledge in wireless network optimization. This project will conduct a systematic study including learning method selection, input/output design, cost function design, training set construction, and parameter tuning, to accommodate the unique needs and requirements for learning from historical optimization instances. This study will demonstrate how the learned knowledge can be exploited to significantly mitigate the computation cost in both centralized optimization and online scheduling. This study will enable people, possibly for the first time, to understand the complex relationship among the input data traffic, internal network features (link or pattern activation), and optimal resource allocation (scheduling or routing).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习已广泛应用于包括无线网络在内的各个领域。尽管机器学习在分类和模式识别方面的能力已被广泛接受,但它在无线网络中的基本研究问题上可以发挥作用。随着异质网络的扩散,无线网络优化的问题大小和复杂性大大增加,要求有效的计算范式。该项目旨在进行一项关于如何利用深度学习以获得无线网络优化绩效增长的开创性研究。将开发创新的技术来从历史优化实例中提取潜在知识,并且将利用这些知识来大大减轻解决新优化问题的计算复杂性。提出的研究将研究无缝整合到优化,机器学习,图形论和无线网络领域。这项跨学科的研究不仅将为本科和研究生提供各种培训项目,而且还可以激发学生以开放的开放和跨学科的观点从事高质量的研究。该项目的结果可能会通过实用无线网络中的低复杂性但有效的资源分配算法直接使该行业受益。预计该项目将为将机器学习与无线网络优化整合在一起,为一系列新的见解和创新方法。这项研究将表明,经过适当训练的机器学习算法可以巧妙地识别导致最佳或近距离解决方案的关键特征(就一系列关键链接或传输模式而言)。传统的数据分类学习框架无法轻松量身定制,以揭示无线网络优化中的潜在知识。该项目将进行系统研究,包括学习方法选择,输入/输出设计,成本功能设计,训练集构建和参数调整,以适应从历史优化实例中学习的独特需求和要求。这项研究将证明如何利用学习知识,以显着减轻集中优化和在线计划中的计算成本。这项研究将使人们首次能够理解输入数据流量,内部网络功能(链接或模式激活)和最佳资源分配(调度或路由)之间的复杂关系。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力和更广泛的影响来评估的支持,并被认为是值得的。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Deep Learning for Wireless Network Optimization
A Self-Supervised Learning Approach for Accelerating Wireless Network Optimization
  • DOI:
    10.1109/tvt.2023.3244043
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Shuai Zhang;O. Ajayi;Yu-long Cheng
  • 通讯作者:
    Shuai Zhang;O. Ajayi;Yu-long Cheng
Experience-Driven Wireless D2D Network Link Scheduling: A Deep Learning Approach
Age of Local Information for Fusion Freshness in Internet of Things
Machine Learning Assisted Capacity Optimization for B5G/6G Integrated Access and Backhaul Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Cheng其他文献

Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production
N-[(2-羟基-3-三甲基铵)丙基]氯化壳聚糖/Na2SiO3聚合物基生物柴油催化剂的制备及催化性能
  • DOI:
    10.1016/j.renene.2015.11.036
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    BenQiao He;YiXuan Shao;JianXin Li;Yu Cheng
  • 通讯作者:
    Yu Cheng
Insight into the structure and mechanical performance of high content lignin reinforced poly (vinyl alcohol) gel-spun fibers via the regulation of esterified hydrophilic lignin composition for better sustainability
通过调节酯化亲水性木质素成分,深入了解高含量木质素增强聚(乙烯醇)凝胶纺丝纤维的结构和机械性能,以实现更好的可持续性
  • DOI:
    10.1002/app.53577
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Xiaorui Sun;Jiaxian Lin;Yu Cheng;Lianjie Duan;Xiaoxia Sun;Xian Li;Chunhong Lu
  • 通讯作者:
    Chunhong Lu
A supervisory hierarchical control approach for text to 2D scene generation
用于文本到 2D 场景生成的监督分层控制方法
Program robots manufacturing tasks by natural language instructions
通过自然语言指令对机器人制造任务进行编程
Polyimide-based composite films with largely enhanced energy storage performances toward high-temperature electrostatic capacitor applications
聚酰亚胺基复合薄膜在高温静电电容器应用中大幅增强储能性能
  • DOI:
    10.1021/acsaem.2c02068
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yu Cheng;Hanxi Chen;Shuang Xin;Zhongbin Pan;Xiangping Ding;Zhicheng Li;Xu Fan;Jinjun Liu;Peng Li;Jinhong Yu
  • 通讯作者:
    Jinhong Yu

Yu Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Cheng', 18)}}的其他基金

AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
  • 批准号:
    2008092
  • 财政年份:
    2020
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression
阿尔茨海默病进展的动态多变量规范比较和风险筛查
  • 批准号:
    1916001
  • 财政年份:
    2019
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
  • 批准号:
    1610874
  • 财政年份:
    2016
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
  • 批准号:
    1643335
  • 财政年份:
    2016
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
  • 批准号:
    1320736
  • 财政年份:
    2014
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
  • 批准号:
    1207711
  • 财政年份:
    2012
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
  • 批准号:
    1117687
  • 财政年份:
    2012
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Underexplored: A Fundamental Study of Optimal Resource Allocation and Low-Complexity Algorithms in Multi-Radio Multi-Channel Wireless Networks
职业:探索未开发领域:多无线电多通道无线网络中最优资源分配和低复杂度算法的基础研究
  • 批准号:
    1053777
  • 财政年份:
    2011
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于CT定量机器学习在非小细胞肺癌精准个体化治疗中的应用研究
  • 批准号:
    82160348
  • 批准年份:
    2021
  • 资助金额:
    34.00 万元
  • 项目类别:
    地区科学基金项目
非线性反应波驱动软机器人的小尺度化与活性运动
  • 批准号:
    22120102001
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于机器学习的非小细胞肺癌组织PD-L1和免疫微环境判读模型的研究
  • 批准号:
    82003155
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
NT小句复合体模型的理论和应用研究
  • 批准号:
    61672175
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
面向机器人的Spiking神经网络小储备池计算理论及其应用研究
  • 批准号:
    61473051
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 41.07万
  • 项目类别:
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Continuing Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
  • 批准号:
    2320980
  • 财政年份:
    2024
  • 资助金额:
    $ 41.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了