Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression

阿尔茨海默病进展的动态多变量规范比较和风险筛查

基本信息

  • 批准号:
    1916001
  • 负责人:
  • 金额:
    $ 17.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the development of statistical methods for analyzing data from the Alzheimer Disease (AD) Research Center (ADRC). The first objective is to develop robust procedures to classify cognitive impairment over repeated visits. This has important clinical implications, as current diagnostic methods tend to falsely flag healthy subjects as impaired. The second project focuses on systematic evaluation of high-dimensional risk factors to select promising features that can separate those subjects who will develop AD, from those who might die, and those who will be alive and disease free by a certain time point. The completion of this project will lead to the identification of important risk factors that are predictive of both AD and survival. These newly identified biological, clinical, and genetic markers will guide future studies developing targeted intervention for AD. The proposed methods are relevant for disease diagnosis and risk screening but may also be applied to other areas such as economics, finance and engineering. The project will integrate research and education through the mentoring of graduate students. The first project concerns longitudinal measures of multiple domain scores of cognitive functioning modeled using multivariate mixed-effect models. A longitudinal multivariate normative comparison (MNC) statistic is then computed to measure the distance between a subject's domain scores and the estimated norm of healthy controls. Different thresholding methods are proposed for the longitudinal MNC based on the Chi-square approximation and permutation to identify cognitive impairment from retrospective data. Two familywise-error-rate controlling procedures are developed to dynamically screen for cognitive impairment at each ongoing visit, by comparing the p-values from the longitudinal MNC with adaptive significance levels. In the second project, a recently developed diagnostic measure of the volume under the ROC surface (VUS) is adopted as a model-free screening metric for ordinal competing endpoints. The VUS can be readily estimated as a concordance probability by some weighted U-statistics. The proposed screening procedure based on the U-type estimator of the VUS provides systematic and dynamic evaluation of markers' discriminatory capacity without any model assumptions. As the first screening method developed specifically for ordinal disease progression, the successful completion of the second project will contribute to the broader field of high-dimensional risk screening.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是开发用于分析阿尔茨海默氏病(AD)研究中心(ADRC)数据的统计方法。 第一个目的是制定强大的程序,以对重复访问进行认知障碍分类。这具有重要的临床意义,因为当前的诊断方法往往会错误地标记健康受试者。 第二个项目的重点是对高维风险因素的系统评估,以选择有希望的功能,这些特征可以将发展广告,可能死亡的人以及将在某个时间点上生存和疾病的人分开。 该项目的完成将导致识别重要的风险因素,这些风险因素可以预测AD和生存。 这些新确定的生物学,临床和遗传标记将指导未来的研究开发针对AD的靶向干预措施。 所提出的方法与疾病诊断和风险筛查有关,但也可能应用于其他领域,例如经济,金融和工程。 该项目将通过指导研究生来整合研究和教育。第一个项目涉及使用多元混合效应模型建模的认知功能多个领域得分的纵向测量。 然后,计算纵向多元规范性比较(MNC)统计量,以测量受试者的域分数与健康对照的估计规范之间的距离。基于卡方近似和置换术,提出了针对纵向MNC的不同阈值方法,以从回顾性数据中识别认知障碍。 通过比较来自纵向MNC的p值和适应性显着性水平的p值,开发了两个家庭视率控制程序,以动态筛选认知障碍。在第二个项目中,采用了最近开发的对ROC表面(VU)下体积的诊断度量,以作为序数竞争终点的无模型筛选度量。通过某些加权U统计量,可以很容易地将VU视为一致性概率。基于VUS的U型估计器的拟议筛选程序提供了对标记歧视能力的系统和动态评估,而无需任何模型假设。由于第一种专门针对有序疾病进展开发的筛查方法,第二个项目的成功完成将有助于更广泛的高维风险筛查领域。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的评估来支持的。智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying diagnostic accuracy improvement of new biomarkers for competing risk outcomes
量化新生物标志物诊断准确性的提高,以应对竞争风险结果
  • DOI:
    10.1093/biostatistics/kxaa048
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Wang, Zheng;Cheng, Yu;Seaberg, Eric C;Becker, James T
  • 通讯作者:
    Becker, James T
Quantile association regression on bivariate survival data
Dynamic impairment classification through arrayed comparisons
  • DOI:
    10.1002/sim.9601
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wang,Zheng;Wang,Zi;Becker,James T.
  • 通讯作者:
    Becker,James T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Cheng其他文献

Research on Edge Detection of LiDAR Images Based on Artificial Intelligence Technology
基于人工智能技术的激光雷达图像边缘检测研究
Bridging Disentanglement with Independence and Conditional Independence via Mutual Information for Representation Learning
通过表示学习的互信息弥合独立性和条件独立性的解脱
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojiang Yang;Wendong Bi;Yu Cheng;Junchi Yan
  • 通讯作者:
    Junchi Yan
Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production
N-[(2-羟基-3-三甲基铵)丙基]氯化壳聚糖/Na2SiO3聚合物基生物柴油催化剂的制备及催化性能
  • DOI:
    10.1016/j.renene.2015.11.036
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    BenQiao He;YiXuan Shao;JianXin Li;Yu Cheng
  • 通讯作者:
    Yu Cheng
An Efficient and Enantioselective Synthesis of d-Biotin
d-生物素的高效对映选择性合成
  • DOI:
    10.1055/s-2000-8716
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fen‐er Chen;Y. Huang;H. Fu;Yu Cheng;Dao;Yong;Zuo
  • 通讯作者:
    Zuo
Object tracking in the complex environment based on SIFT
基于SIFT的复杂环境目标跟踪

Yu Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Cheng', 18)}}的其他基金

AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
  • 批准号:
    2008092
  • 财政年份:
    2020
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
  • 批准号:
    1816908
  • 财政年份:
    2018
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
  • 批准号:
    1610874
  • 财政年份:
    2016
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
  • 批准号:
    1643335
  • 财政年份:
    2016
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
  • 批准号:
    1320736
  • 财政年份:
    2014
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
  • 批准号:
    1207711
  • 财政年份:
    2012
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
  • 批准号:
    1117687
  • 财政年份:
    2012
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Underexplored: A Fundamental Study of Optimal Resource Allocation and Low-Complexity Algorithms in Multi-Radio Multi-Channel Wireless Networks
职业:探索未开发领域:多无线电多通道无线网络中最优资源分配和低复杂度算法的基础研究
  • 批准号:
    1053777
  • 财政年份:
    2011
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

非平稳条件下多变量洪水频率分析方法研究-以淮河流域为例
  • 批准号:
    42301026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于稀疏观测多变量同化的湖泊富营养化动力学机制及水华预测研究
  • 批准号:
    42371367
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多变量可调发动机模态转换过程匹配机理研究
  • 批准号:
    52372397
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于推力反馈的自适应循环发动机多变量控制
  • 批准号:
    52302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
快速精准大量类分类的拓扑优化多变量决策树及其集成方法研究
  • 批准号:
    62306231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
  • 批准号:
    10662781
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了