AF: Small: Faster Algorithms for High-Dimensional Robust Statistics

AF:小:用于高维稳健统计的更快算法

基本信息

  • 批准号:
    2307106
  • 负责人:
  • 金额:
    $ 39.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

As machine learning plays a more prominent role in our society, there is a need for learning algorithms that are reliable and robust. In modern machine learning, one often needs to work with data that are high-dimensional and noisy. Recent work gave the first efficient robust estimators for several basic statistical problems, and since then, there has been a flurry of research that obtained efficient robust algorithms for many machine-learning problems. However, one major drawback of existing algorithms in the literature is that they tend to be much slower when compared to their non-robust counterparts, or they often involve parameters that require careful tuning. To address these issues, this project aims to (i) design faster and provably robust algorithms for a wide range of high-dimensional statistical and learning tasks, and (ii) explore non-convex formulations of robust estimation and analyze their optimization landscape. This project will advance the fields of computer science and statistics, and also potentially lead to useful tools for other areas. The pursuit of faster and simpler algorithms will help accelerate technology transfer into practice, stimulate systematic approaches to robustness, and provide a positive societal impact in the long run. The education plan of this project includes incorporating the materials generated from this project into graduate-level courses at the University of Illinois at Chicago (UIC), as well as training graduate and undergraduate students at UIC, which is an urban university with a diverse student population.Designing robust algorithms in high dimensions is a very challenging task. Even for the basic problem of mean estimation, when a small fraction of the input is adversarially corrupted, no efficient algorithms were known until recently. The first polynomial-time estimators with dimension-independent error guarantees were discovered in 2016. However, given the amount of data available today, polynomial-time no longer translates to scalability in practice. Motivated by the need for faster and more practical algorithms, this project focuses on two main thrusts to expand the area of algorithmic high-dimensional robust statistics. First, the investigator would like to speed up existing algorithms and develop new robust algorithms for a broader range of problems and richer families of distributions, with the ultimate goal of matching the runtime of the fastest non-robust algorithms. Second, the investigator wants to design robust estimators that can be computed via standard first-order optimization methods. The main challenge is to find an objective function whose gradient can be evaluated using basic matrix operations while proving the structural result that this objective has no bad local optima. Concretely, the investigator plans to work on these two thrusts by targeting various aspects of the following problems: (1) robust stochastic optimization, (2) robust sparse mean estimation and sparse PCA, (3) robust covariance estimation, (4) list-decodable learning, and (5) robust learning of Bayesian networks. This project is interdisciplinary and will rely on intuition and techniques from statistics, probability, linear algebra, discrete and continuous optimization, and non-convex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器学习在我们的社会中发挥着越来越重要的作用,需要可靠且稳健的学习算法。在现代机器学习中,人们经常需要处理高维且有噪声的数据。最近的工作为几个基本统计问题提供了第一个有效的鲁棒估计器,从那时起,出现了一系列的研究,为许多机器学习问题获得了有效的鲁棒算法。然而,文献中现有算法的一个主要缺点是,与非鲁棒算法相比,它们往往要慢得多,或者它们经常涉及需要仔细调整的参数。为了解决这些问题,该项目的目标是(i)为各种高维统计和学习任务设计更快且可证明稳健的算法,以及(ii)探索稳健估计的非凸公式并分析其优化前景。该项目将推动计算机科学和统计学领域的发展,并有可能为其他领域带来有用的工具。追求更快、更简单的算法将有助于加速技术转化为实践,激发系统方法的鲁棒性,并从长远来看产生积极的社会影响。该项目的教育计划包括将该项目产生的材料纳入伊利诺伊大学芝加哥分校(UIC)的研究生水平课程中,以及在UIC(一所学生多元化的城市大学)培训研究生和本科生。设计高维度的鲁棒算法是一项非常具有挑战性的任务。即使对于均值估计的基本问题,当一小部分输入被对抗性破坏时,直到最近才知道有效的算法。第一个具有维度无关误差保证的多项式时间估计器于 2016 年被发现。然而,考虑到当今可用的数据量,多项式时间在实践中不再转化为可扩展性。出于对更快、更实用算法的需求,该项目侧重于扩展算法高维鲁棒统计领域的两个主要目标。首先,研究人员希望加快现有算法的速度,并为更广泛的问题和更丰富的分布族开发新的鲁棒算法,最终目标是匹配最快的非鲁棒算法的运行时间。其次,研究人员希望设计可以通过标准一阶优化方法计算的稳健估计器。主要挑战是找到一个可以使用基本矩阵运算评估梯度的目标函数,同时证明该目标没有不良局部最优的结构结果。 具体来说,研究者计划通过针对以下问题的各个方面来研究这两个主旨:(1)鲁棒随机优化,(2)鲁棒稀疏均值估计和稀疏PCA,(3)鲁棒协方差估计,(4)列表-可解码学习,以及(5)贝叶斯网络的稳健学习。该项目是跨学科的,将依赖于统计学、概率、线性代数、离散和连续优化以及非凸优化的直觉和技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Matrix Sensing in the Semi-Random Model
半随机模型中的鲁棒矩阵传感
Outlier-Robust Sparse Estimation via Non-Convex Optimization
通过非凸优化的异常值稳健稀疏估计
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing
  • DOI:
    10.48550/arxiv.2403.10547
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuyao Li;Yu Cheng;Ilias Diakonikolas;Jelena Diakonikolas;Rong Ge;Stephen J. Wright
  • 通讯作者:
    Shuyao Li;Yu Cheng;Ilias Diakonikolas;Jelena Diakonikolas;Rong Ge;Stephen J. Wright
Tight Lower Bounds for Directed Cut Sparsification and Distributed Min-Cut
定向切割稀疏化和分布式最小切割的严格下界
Efficiently Solving Turn-Taking Stochastic Games with Extensive-Form Correlation
有效解决具有广泛形式相关性的轮流随机博弈
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Cheng其他文献

Research on Edge Detection of LiDAR Images Based on Artificial Intelligence Technology
基于人工智能技术的激光雷达图像边缘检测研究
Bridging Disentanglement with Independence and Conditional Independence via Mutual Information for Representation Learning
通过表示学习的互信息弥合独立性和条件独立性的解脱
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojiang Yang;Wendong Bi;Yu Cheng;Junchi Yan
  • 通讯作者:
    Junchi Yan
Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production
N-[(2-羟基-3-三甲基铵)丙基]氯化壳聚糖/Na2SiO3聚合物基生物柴油催化剂的制备及催化性能
  • DOI:
    10.1016/j.renene.2015.11.036
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    BenQiao He;YiXuan Shao;JianXin Li;Yu Cheng
  • 通讯作者:
    Yu Cheng
An Efficient and Enantioselective Synthesis of d-Biotin
d-生物素的高效对映选择性合成
  • DOI:
    10.1055/s-2000-8716
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fen‐er Chen;Y. Huang;H. Fu;Yu Cheng;Dao;Yong;Zuo
  • 通讯作者:
    Zuo
Object tracking in the complex environment based on SIFT
基于SIFT的复杂环境目标跟踪

Yu Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Cheng', 18)}}的其他基金

AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
  • 批准号:
    2008092
  • 财政年份:
    2020
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression
阿尔茨海默病进展的动态多变量规范比较和风险筛查
  • 批准号:
    1916001
  • 财政年份:
    2019
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
  • 批准号:
    1816908
  • 财政年份:
    2018
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
  • 批准号:
    1610874
  • 财政年份:
    2016
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
  • 批准号:
    1643335
  • 财政年份:
    2016
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
  • 批准号:
    1320736
  • 财政年份:
    2014
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
  • 批准号:
    1207711
  • 财政年份:
    2012
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
  • 批准号:
    1117687
  • 财政年份:
    2012
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Continuing Grant
CAREER: Exploring the Underexplored: A Fundamental Study of Optimal Resource Allocation and Low-Complexity Algorithms in Multi-Radio Multi-Channel Wireless Networks
职业:探索未开发领域:多无线电多通道无线网络中最优资源分配和低复杂度算法的基础研究
  • 批准号:
    1053777
  • 财政年份:
    2011
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: AF: Small: Algorithms and a Code Generator for Faster Stencil Computations
SHF:AF:Small:用于更快模板计算的算法和代码生成器
  • 批准号:
    2318633
  • 财政年份:
    2023
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
AF: Small: Shortest Paths and Distance Parameters: Faster, Fault-Tolerant and More Accurate
AF:小:最短路径和距离参数:更快、容错且更准确
  • 批准号:
    2129139
  • 财政年份:
    2021
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
AF: Small: Faster and Better Algorithms for, and via, Mathematical Programming Relaxations
AF:小:更快更好的算法,并通过数学编程松弛
  • 批准号:
    1910149
  • 财政年份:
    2019
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Faster Arithmetic for Sparse Polynomials and Integers
AF:小:RUI:稀疏多项式和整数的更快算术
  • 批准号:
    1319994
  • 财政年份:
    2013
  • 资助金额:
    $ 39.1万
  • 项目类别:
    Interagency Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了