AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
基本信息
- 批准号:1812695
- 负责人:
- 金额:$ 13.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The eigenvalue problem is a central topic in science and engineering arising from a wide range of applications and posing major numerical challenges. For decades, it has been the focus of numerous theoretical research activities for developing various efficient numerical algorithms. These efforts have led to the development of new software that is essential to assist the everyday work of many engineers and scientists. In spite of progress made on solving the eigenvalue problem, methods available for handling these problems remain limited in their scope and they have not resulted in effective general-purpose software so far. The primary goal of this project is to fill this gap by advancing the state of the art in solution methods for nonlinear eigenvalue problems which are both mathematically and practically far more challenging than the traditional linear eigenvalue problems. The combined expertise of the investigating team is well suited for exploring new algorithms in this arena, analyzing them, and developing new effective software that can universally impact a wide range of disciplines (engineering, physics, chemistry, and biology). The outcome of the project are expected to open new and efficient ways to solve nonlinear eigenvalue problems. A new suite of state of the art numerical routines will be developed, fully tested, and publicly released.The goal of this project is to advance the state-of-the-art in solution methods for nonlinear eigenvalue problems. The new approaches that are envisioned are expected to be particularly effective for solving large-scale problems using parallelism. The main thrust of the project is the development of novel eigenvalue algorithms based on generalizations of Cauchy integral type methods for the nonlinear case, combined with projection methods such as Krylov and subspace iteration. A starting point in this investigation is the FEAST approach which will be adapted to the nonlinear context. Because the problems under consideration are expected to be large and sparse, the team will investigate methods that rely on domain decomposition where the original physical domain is partitioned into a number of subdomains in order to exploit parallelism. Among other goals, the team will carefully study the extension of the tools that are exploited in the linear case, such as spectrum slicing (computing eigenvalues by parts), block methods, and iterative linear solves, to the nonlinear case.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
特征值问题是由广泛的应用以及带来重大数值挑战引起的科学和工程学的核心主题。几十年来,这一直是许多理论研究活动的重点,用于开发各种有效的数值算法。这些努力导致了新软件的开发,这对于帮助许多工程师和科学家的日常工作至关重要。尽管在解决特征值问题方面取得了进展,但可用于处理这些问题的方法在其范围中仍然有限,并且到目前为止尚未产生有效的通用软件。该项目的主要目的是通过在数学和实际上比传统的线性特征值问题的非线性特征值问题的解决方案方法来填补这一空白。调查团队的综合专业知识非常适合探索该领域的新算法,分析它们,并开发新的有效软件,这些软件可以普遍影响广泛的学科(工程,物理,化学和生物学)。该项目的结果有望开放新的有效方法来解决非线性特征值问题。将开发,全面测试并公开发布一套新的最新数值例程。该项目的目的是推进针对非线性特征值问题的解决方案方法的最新方法。预计将设想的新方法对于使用并行性解决大规模问题特别有效。该项目的主要目的是基于非线性案例的Cauchy积分类型方法的概括的新型特征值算法的开发,并结合了Krylov和子空间迭代等投影方法。这项调查的起点是盛宴方法,该方法将适应非线性环境。由于所考虑的问题有望大且稀疏,因此团队将研究依赖域分解的方法,其中原始物理域被分配到许多子域中以利用并行性。除其他目标外,团队还将仔细研究在线性案例中所利用的工具的扩展,例如Spectrum切片(按部分计算特征值),块方法和迭代的线性求解,并将其求解到非线性案例。该奖项反映了NSF的法定任务,并通过评估了基金会的范围,并通过评估了基金会的范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A rational approximation method for solving acoustic nonlinear eigenvalue problems
- DOI:10.1016/j.enganabound.2019.10.006
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Mohamed El-Guide;A. Miedlar;Y. Saad
- 通讯作者:Mohamed El-Guide;A. Miedlar;Y. Saad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yousef Saad其他文献
Randomized linear solvers for computational architectures with straggling workers
用于具有落后工人的计算架构的随机线性求解器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
V. Kalantzis;Yuanzhe Xi;L. Horesh;Yousef Saad - 通讯作者:
Yousef Saad
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
- DOI:
10.1109/hpcmp-ugc.2010.17 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
James Freericks;H. R. Krishnamurthy;Pierre Carrier;Yousef Saad - 通讯作者:
Yousef Saad
Computing charge densities with partially reorthogonalized Lanczos
- DOI:
10.1016/j.cpc.2005.05.005 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:
- 作者:
Constantine Bekas;Yousef Saad;Murilo L. Tiago;James R. Chelikowsky - 通讯作者:
James R. Chelikowsky
Algorithms for the evolution of electronic properties in nanocrystals
- DOI:
10.1016/j.cpc.2007.02.072 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
James R. Chelikowsky;Murilo L. Tiago;Yousef Saad;Yunkai Zhou - 通讯作者:
Yunkai Zhou
Yousef Saad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yousef Saad', 18)}}的其他基金
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208456 - 财政年份:2022
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Multilevel Graph-Based Methods for Efficient Data Exploration
基于多级图的高效数据探索方法
- 批准号:
2011324 - 财政年份:2020
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1912048 - 财政年份:2019
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Tenth International Conference on Preconditioning Techniques for Scientific and Industrial Applications
第十届科学和工业应用预处理技术国际会议
- 批准号:
1735572 - 财政年份:2017
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
- 批准号:
1505970 - 财政年份:2015
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1521573 - 财政年份:2015
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
AF: small: Numerical Linear Algebra Methods for Efficient Data Exploration
AF:小:高效数据探索的数值线性代数方法
- 批准号:
1318597 - 财政年份:2013
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Advances in robust multilevel preconditioning methods for sparse linear systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1216366 - 财政年份:2012
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Collaborative research: Development of efficient petascale algorithms for inhomogeneous quantum-mechanical systems
合作研究:开发非齐次量子力学系统的高效千万亿级算法
- 批准号:
0904587 - 财政年份:2009
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
CDI Type I: Collaborative research: Materials Informatics: Computational tools for discovery and design
CDI I 型:协作研究:材料信息学:用于发现和设计的计算工具
- 批准号:
0940218 - 财政年份:2009
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant