Advances in robust multilevel preconditioning methods for sparse linear systems

稀疏线性系统鲁棒多级预处理方法的进展

基本信息

  • 批准号:
    1216366
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The primary goal of this project is to investigate multi-level preconditioning techniques for solving linear systems of equations, placing a high emphasis on robustness issues. One of the key concepts used in these methods is that of coarsening, i.e., the method of reducing a set of variables of a system (called `fine' unknowns) to a smaller set (called `coarse' unknowns) which yields a good representation of the fine set. So far, coarsening has been viewed mostly from the angle of algebraic multi-Grid. A number of multi-level ILU type techniques, primarily based on coarsening ideas, will be studied. The research team will also investigate a new set of Multi-Level Low-Rank approximation techniques within Domain-Decomposition type methods. A number of factors make these methods very appealing, including their robustness and their potential effectiveness on high-performance computers, e.g., ones employing GPGPUs. Finally, in an effort to tie the development of preconditioners more closely with applications, the research team will consider methodologies for developing what may be termed `application-tailored preconditioners.'Though enormous progress has been made in the last two decades in the solution of large sparse linear systems of equations by iterative methods, the state-of-the-art of these methods remains unsatisfactory in many areas. Foremost among these is the lack of robustness of iterative techniques in dealing with a variety of real-life problems. Recent research on Preconditioned Krylov Subspace Methods (PKSMs) has aimed at achieving a good compromise between generality and efficiency by incorporating techniques from different horizons, including multilevel concepts to improve scalability and adopting ideas from direct solution methods to improve robustness. At the same time that these improvements are being deployed, the demands on developers of iterative solution methods are changing. Applications have become much more challenging, and new computational environments are making obsolete complex software that often took several years to mature. The aim of this research proposal is to address new challenges and questions that have emerged for PKSMs in recent years as well as to explore more common research issues where progress is of vital importance. All general use codes that will be developed under this project will be freely distributed under the GNU public use license. The PI already has a long practice with distributing codes in this fashion. This project will have an impact on the training of graduate students in a field that is vital to the needs of academia, industry, and government laboratories. At a time where there is a significant upsurge of demand for specialists in computational mathematics, the number of graduate students trained in this broad area has diminished. The PI will place a major effort in attracting and training students in topics related to scientific computing and high-performance computing. Because it is important to sparkle the interest into these areas at an early stage of the student career, the proposal highlights plans for employing two undergraduate summer interns to work on specific topics of this proposal, throughout its duration. Among other training activities the PI will continue the practice of freely disseminating books, lecture notes, and MATLAB scripts for educational purposes.
该项目的主要目的是研究用于求解方程式线性系统的多层次预处理技术,并高度重视鲁棒性问题。这些方法中使用的关键概念之一是将系统(称为“ Fine”未知数称为“ Fine”未知数)减少的方法(称为``粗''未知数),从而使罚款集的良好表示。到目前为止,已经大部分从代数多网格的角度看待了变形。将研究许多主要基于粗糙思想的多层ILU类型技术。研究团队还将研究域分解类型方法中一组新的多级低级近似技术。许多因素使这些方法非常吸引人,包括它们的鲁棒性以及它们对高性能计算机的潜在有效性,例如使用GPGPU的计算机。最后,为了将预科人员更加紧密地与应用联系起来,研究团队将考虑开发可能称为“应用程序销售的预先调查器”的方法。尽管在过去的二十年中,在过去的二十年中取得了巨大的进步,在大型稀疏方程式解决方程式的解决方案解决方案解决方程式系统中,这些方法是通过迭代的方法,这些方法的状态不可分割的领域仍然不可能。其中最重要的是在处理各种现实生活问题时缺乏迭代技术的鲁棒性。关于预处理的Krylov子空间方法(PKSM)的最新研究旨在通过合并来自不同视野的技术,包括多层次的概念,以提高直接解决方案方法来提高鲁棒性,从而实现一般性和效率之间的良好妥协。在部署这些改进的同时,对迭代解决方案方法开发人员的需求正在发生变化。应用程序变得更具挑战性,新的计算环境正在制造过时的复杂软件,通常花费数年的时间才能成熟。这项研究建议的目的是解决近年来PKSM出现的新挑战和问题,以及探索进步至关重要的更常见的研究问题。根据GNU公共使用许可,将根据该项目开发的所有常规使用代码将自由分发。 PI已经以这种方式进行了长期的练习,以这种方式分发代码。该项目将影响对学术界,工业和政府实验室需求至关重要的领域研究生的培训。在计算数学方面对专家的需求大幅增长的时候,在这个广泛领域培训的研究生人数减少了。 PI将在吸引和培训与科学计算和高性能计算有关的主题的学生方面做出重大努力。由于在学生职业生涯的早期阶段将兴趣引发到这些领域很重要,因此该提案强调了计划在整个期限内雇用两名本科暑期实习生来研究该建议的特定主题。在其他培训活动中,PI将继续进行自由传播书籍,讲座和MATLAB脚本的实践,以进行教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yousef Saad其他文献

Randomized linear solvers for computational architectures with straggling workers
用于具有落后工人的计算架构的随机线性求解器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kalantzis;Yuanzhe Xi;L. Horesh;Yousef Saad
  • 通讯作者:
    Yousef Saad
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
Computing charge densities with partially reorthogonalized Lanczos
  • DOI:
    10.1016/j.cpc.2005.05.005
  • 发表时间:
    2005-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Constantine Bekas;Yousef Saad;Murilo L. Tiago;James R. Chelikowsky
  • 通讯作者:
    James R. Chelikowsky
Algorithms for the evolution of electronic properties in nanocrystals
  • DOI:
    10.1016/j.cpc.2007.02.072
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    James R. Chelikowsky;Murilo L. Tiago;Yousef Saad;Yunkai Zhou
  • 通讯作者:
    Yunkai Zhou

Yousef Saad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yousef Saad', 18)}}的其他基金

Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
  • 批准号:
    2208456
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multilevel Graph-Based Methods for Efficient Data Exploration
基于多级图的高效数据探索方法
  • 批准号:
    2011324
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1912048
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812695
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Tenth International Conference on Preconditioning Techniques for Scientific and Industrial Applications
第十届科学和工业应用预处理技术国际会议
  • 批准号:
    1735572
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
  • 批准号:
    1505970
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
  • 批准号:
    1521573
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: small: Numerical Linear Algebra Methods for Efficient Data Exploration
AF:小:高效数据探索的数值线性代数方法
  • 批准号:
    1318597
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative research: Development of efficient petascale algorithms for inhomogeneous quantum-mechanical systems
合作研究:开发非齐次量子力学系统的高效千万亿级算法
  • 批准号:
    0904587
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CDI Type I: Collaborative research: Materials Informatics: Computational tools for discovery and design
CDI I 型:协作研究:材料信息学:用于发现和设计的计算工具
  • 批准号:
    0940218
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

强壮前沟藻共生细菌降解膦酸酯产生促藻效应的分子机制
  • 批准号:
    42306167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效率强壮消息鉴别码的分析与设计
  • 批准号:
    61202422
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
半定松弛与非凸二次约束二次规划研究
  • 批准号:
    11271243
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
  • 批准号:
    61271414
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
民航客运网络收益管理若干问题的研究
  • 批准号:
    60776817
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ERI: Multilevel Inverse Robust Co-Design of Materials, Products, and Manufacturing Processes
ERI:材料、产品和制造工艺的多级逆稳健协同设计
  • 批准号:
    2301808
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Enhancing capacity in faith-based organizations to implement and sustain multilevel innovations to improve physical activity
增强信仰组织实施和维持多层次创新以改善身体活动的能力
  • 批准号:
    10392298
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Enhancing capacity in faith-based organizations to implement and sustain multilevel innovations to improve physical activity
增强信仰组织实施和维持多层次创新以改善身体活动的能力
  • 批准号:
    10797542
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Enhancing capacity in faith-based organizations to implement and sustain multilevel innovations to improve physical activity
增强信仰组织实施和维持多层次创新以改善身体活动的能力
  • 批准号:
    10579906
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了