CDI Type I: Collaborative research: Materials Informatics: Computational tools for discovery and design
CDI I 型:协作研究:材料信息学:用于发现和设计的计算工具
基本信息
- 批准号:0940218
- 负责人:
- 金额:$ 34.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is made on a proposal submitted to the Cyberenabled Discovery and Innovation initiative. The goal of this CDI project is to explore new, transformative strategies that will exploit recent advances in quantum modeling algorithms and software, data mining techniques, and high-performance hardware, for the discovery and design of materials for a wide variety of applications. While the number of experimentally known binary materials is fairly complete, of the roughly 160,000 possible ternary materials only about 5% are known and of the possible 4 million quaternary materials less than 1% are known. The potential for finding a new material in this realm is great, e.g., a superhard material, a new catalytic material, or an efficient photovoltaic material could be residing in this set of unexplored materials. An efficient search for special materials in this myriad of possible combinations is a daunting task. Successful searching procedures combined with effective computational methods to evaluate the properties of a candidate material could have a tremendous impact as theoretical methods for materials discovery challenge experimental ones. Materials scientists would be able to examine postulated materials on a routine basis and predict their properties without resort to experiment. Synthesis of novel materials would be greatly enhanced. The research will implement methods in the category of materials informatics. The focus will be on combining data mining with quantum mechanical methods for computing properties of materials to address "grand challenge" problems such as how to engineer semiconductors with desired electronic properties, thermoelectricity, and catalysis. The cross-disciplinary theme of the proposed work will rely on the expertise of the PIs in three main areas that are vital to its success: materials science, data mining, and high-performance computing. This award supports the PIs' commitment to a vigorous program of attracting underrepresented groups. Owing to the relatively new approach of informatics applied to materials, it is imperative to train students and researchers in both data mining and quantum modeling. The PIs' activities will center on the following efforts:Alice in Wonderland Program. This teaching activity will involve an active effort to recruit members of underrepresented groups at the high school level to participate in materials research activities. The Alice in Wonderland program is coordinated at the University of Texas. The goal of this program is to attract female high school students to physics, materials science or chemical engineering by involving them in research over the summer before they make decisions about colleges. The high school students attend a short course given at the start of the program by graduate students and work in research labs under the mentorship of the PIs. Summer Undergraduate Interns. Under prior NSF support, the PIs initiated a program with the Minnesota Supercomputing Institute to recruit undergraduate interns interested in high performance computing for summer internships. The interns will be located at the University of Minnesota and will participate in this project?s research activities. Graduate Education and Training. The number of multidisciplinary efforts which focus on problems in the materials has increased at a rapid pace in recent years. At the same time, the number of students who receive training on the effective use of informatics software for materials is small. To address this issue, the PIs will design new courses, outside of the current curriculum, to meet this need and train graduate students in this new field. Students will exchange mentors between the PIs to ensure that each will have a knowledge of informatics and materials modeling.
该奖项是根据提交网络培养发现和创新计划提交的提案颁发的。该CDI项目的目的是探索新的变革性策略,这些策略将利用量子建模算法和软件,数据挖掘技术和高性能硬件的最新进展,以发现和设计各种应用程序的材料。尽管实验已知的二进制材料的数量相当完整,但在大约160,000个可能的三元材料中,只有约5%的材料已知,而在可能的400万季四元材料中,较少1%的四元材料已知。在该领域中找到新材料的潜力非常好,例如,可以驻留在这套未探索的材料中,例如,超级材料,新的催化材料或有效的光伏材料。在这种无数可能的组合中,有效地搜索特殊材料是一项艰巨的任务。成功的搜索程序与有效的计算方法相结合,以评估候选材料的性质可能会产生巨大的影响,作为材料发现挑战实验的理论方法。材料科学家将能够常规检查假定的材料,并在没有实验的情况下预测其性质。新型材料的合成将大大增强。该研究将在材料信息学类别中实施方法。重点将是将数据挖掘与用于计算材料特性的量子机械方法相结合,以解决“大挑战”问题,例如如何使用所需的电子特性,热电和催化来设计具有所需电子性能的半导体。拟议工作的跨学科主题将依赖于三个主要领域的PIS专业知识,这些领域对其成功至关重要:材料科学,数据挖掘和高性能计算。该奖项支持PIS对吸引人数不足的群体的积极计划的承诺。由于适用于材料的信息学方法相对较新的方法,必须培训学生和研究人员进行数据挖掘和量子建模。 PIS的活动将以以下努力为中心:爱丽丝梦游仙境计划。这项教学活动将涉及一项积极的努力,以招募高中一级代表性不足的群体的成员参加材料研究活动。爱丽丝梦游仙境计划在德克萨斯大学协调。该计划的目的是通过在夏季参与研究,然后他们就大学做出决定,以吸引女性高中生进入物理,材料科学或化学工程。高中生参加了研究生在课程开始时的简短课程,并在PIS的指导下在研究实验室工作。夏季本科实习生。在先前的NSF支持下,PIS与明尼苏达州超级计算研究所启动了一项计划,以招募对暑期实习感兴趣的本科实习生。实习生将位于明尼苏达大学,将参加该项目的研究活动。研究生教育和培训。近年来,关注材料问题的多学科工作的数量已迅速增加。同时,接受有关材料有效使用信息软件培训的学生数量很少。为了解决这个问题,PI将在当前课程之外设计新课程,以满足这一需求,并在这个新领域培训研究生。学生将在PI之间交换导师,以确保每个人都了解信息学和材料建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yousef Saad其他文献
Randomized linear solvers for computational architectures with straggling workers
用于具有落后工人的计算架构的随机线性求解器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
V. Kalantzis;Yuanzhe Xi;L. Horesh;Yousef Saad - 通讯作者:
Yousef Saad
Efficiently Generalizing Ultra-Cold Atomic Simulations via Inhomogeneous Dynamical Mean-Field Theory from Two- to Three-Dimensions
通过二维到三维的非齐次动态平均场理论有效推广超冷原子模拟
- DOI:
10.1109/hpcmp-ugc.2010.17 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
James Freericks;H. R. Krishnamurthy;Pierre Carrier;Yousef Saad - 通讯作者:
Yousef Saad
Computing charge densities with partially reorthogonalized Lanczos
- DOI:
10.1016/j.cpc.2005.05.005 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:
- 作者:
Constantine Bekas;Yousef Saad;Murilo L. Tiago;James R. Chelikowsky - 通讯作者:
James R. Chelikowsky
Algorithms for the evolution of electronic properties in nanocrystals
- DOI:
10.1016/j.cpc.2007.02.072 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
James R. Chelikowsky;Murilo L. Tiago;Yousef Saad;Yunkai Zhou - 通讯作者:
Yunkai Zhou
Yousef Saad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yousef Saad', 18)}}的其他基金
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208456 - 财政年份:2022
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Multilevel Graph-Based Methods for Efficient Data Exploration
基于多级图的高效数据探索方法
- 批准号:
2011324 - 财政年份:2020
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1912048 - 财政年份:2019
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1812695 - 财政年份:2018
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Tenth International Conference on Preconditioning Techniques for Scientific and Industrial Applications
第十届科学和工业应用预处理技术国际会议
- 批准号:
1735572 - 财政年份:2017
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
AF: Medium: Collaborative research: Advanced algorithms and high-performance software for large scale eigenvalue problems
AF:中:协作研究:大规模特征值问题的先进算法和高性能软件
- 批准号:
1505970 - 财政年份:2015
- 资助金额:
$ 34.61万 - 项目类别:
Continuing Grant
Advances in Robust Multilevel Preconditioning Methods for Sparse Linear Systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1521573 - 财政年份:2015
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
AF: small: Numerical Linear Algebra Methods for Efficient Data Exploration
AF:小:高效数据探索的数值线性代数方法
- 批准号:
1318597 - 财政年份:2013
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Advances in robust multilevel preconditioning methods for sparse linear systems
稀疏线性系统鲁棒多级预处理方法的进展
- 批准号:
1216366 - 财政年份:2012
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative research: Development of efficient petascale algorithms for inhomogeneous quantum-mechanical systems
合作研究:开发非齐次量子力学系统的高效千万亿级算法
- 批准号:
0904587 - 财政年份:2009
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于脑启发的多种类型神经可塑性协同学习机制研究
- 批准号:62306114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同类型社会网络关系对员工工作意义感和创造力的影响研究
- 批准号:72302112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
束长蝽科二个同域分布物种的种内多类型线粒体基因重排类型、地理格局及其演化方式研究
- 批准号:32300369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
受激拉曼散射成像方法用于细胞类型特异的肿瘤代谢研究
- 批准号:22377016
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CDI-Type I: Collaborative Research: High-Dimensional Phase-Space Subdivisions for Seismic Imaging
CDI-Type I:协作研究:地震成像的高维相空间细分
- 批准号:
1327658 - 财政年份:2013
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
- 批准号:
1341128 - 财政年份:2012
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative CDI-Type II: Cyber Enabled Discovery System for Advanced Multidisciplinary Study of Humanitarian Logistics for Disaster Response
协作 CDI-II 型:用于灾难响应人道主义后勤高级多学科研究的网络支持发现系统
- 批准号:
1123924 - 财政年份:2012
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative CDI-Type II: Cyber Enabled Discovery System for Advanced Multidisciplinary Study of Humanitarian Logistics for Disaster Response
协作 CDI-II 型:用于灾难响应人道主义后勤高级多学科研究的网络支持发现系统
- 批准号:
1124827 - 财政年份:2012
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant
Collaborative Research: CDI- Type II: Towards Analyzing Complex Petascale Datasets: The Milky Way Laboratory
合作研究:CDI-II 型:分析复杂千万亿次数据集:银河系实验室
- 批准号:
1124453 - 财政年份:2011
- 资助金额:
$ 34.61万 - 项目类别:
Standard Grant