Nanoplasmonics-Enhanced CMOS Fluorescence Sensors for Lens-Free Multiplexed Biomolecular Detection
用于无透镜多重生物分子检测的纳米等离子体增强型 CMOS 荧光传感器
基本信息
- 批准号:1810067
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Early and accurate disease diagnosis plays a decisive role in effective clinical treatment, especially at the point of care when an immediate treatment decision most needs to be made. The canonical biomarker test format for point-of-care (POC) applications is the lateral flow assay based on paper test strips which is cheap, disposable, easy to use and requires no additional hardware. However, the advantages are obtained at the expense of low sensitivity and limited quantitative measurement results. Gold standards for genetic detection and immunoassays utilize fluorescence-based detection, which offers low detection limit, high reliability, and capability of multiplexed analysis. While highly-accurate, fluorescence detection typically requires multiple optical components, making instrumentation bulky and costly for POC tests. The goal of this project is to develop a new POC testing platform that combines the benefits of high-sensitivity and quantitative analysis of fluorescence-based assays, and the simplicity, portability, and cost-effectiveness of lateral flow tests. The platform utilizes optical metamaterials-integrated photodiode array circuits to convert the enhanced fluorescence sensing signals into amplified electrical readouts to achieve sensitive detection without optical components. The lens-free design promises device miniaturization and facilitates the on-chip integration of microfluidic devices for lateral flow tests. The project fosters the development of a diverse science and engineering workforce with a deep understanding of optics at nanoscales, biosensing technology, and circuit integration. The result of the project will lead to a scalable solution that enables a sensitive, self-contained, quantitative lateral flow assay. This leverages the power and economies of scale of modern silicon integrated circuits, built up over the previous fifty years for high-performance computation and imaging, for a low-cost, bioelectronic sensing application.The key to the success of the proposed approach is to generate enhanced fluorescence and directional light emission by managing the coupling between the fluorescent reporters (fluorophores or quantum dots) on biological probes and the resonance of an optical metamaterial (Aim1). The optical metamaterials composed of metal and dielectric nanostructures exploit surface plasmons to control light. The composition of the metamaterial will be engineered to regulate the spontaneous emission rate of proximate fluorescent reporters and thus boost their emission intensity. Also, the structure of the metamaterial is designed to narrow the radiation pattern of light emission that allows guiding the light toward the photodetector for efficient optical detection. The project explores novel nanofabrication methods based on nanoparticle assembly and thin-film depositions to create large-area nanostructures for the optical metamaterials without sophisticated lithography. Monolithic integration of the metamaterial structures onto photodetector array integrated circuit (IC) substrate allows for detection of metamaterial enhanced fluorescence without optical lenses (Aim 2). A custom CMOS photodetector array IC also provides on-chip signal processing and digitization of all sensors in parallel with a simple, digital readout. A multiplexed sensor will be achieved through addressable functionalization of probe arrays on the integrated sensor substrate. Packaging of the sensor IC with microfluidic delivery using a coplanar wafer-level molding technique will result in a sensitive, miniaturized fluorescence detection platform for POC testing (Aim 3). The proposed work will elucidate the fundamentals of light-matter interactions at nanoscales, create new biosensing technologies, and design guidelines for integration of optical nanostructures, microfluidics, and CMOS ICs for a broad set of future applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
早期准确的疾病诊断对于有效的临床治疗起着决定性作用,特别是在最需要立即做出治疗决定的护理点。用于现场护理 (POC) 应用的标准生物标志物测试格式是基于纸质测试条的侧向层析检测,该检测价格便宜、一次性、易于使用且不需要额外的硬件。然而,这些优势是以低灵敏度和有限的定量测量结果为代价获得的。基因检测和免疫分析的黄金标准采用基于荧光的检测,其检测限低、可靠性高且具有多重分析能力。虽然荧光检测精度很高,但通常需要多个光学元件,这使得 POC 测试仪器体积庞大且成本高昂。该项目的目标是开发一种新的 POC 测试平台,该平台结合了基于荧光的检测的高灵敏度和定量分析的优点,以及侧流测试的简单性、便携性和成本效益。该平台利用光学超材料集成光电二极管阵列电路将增强的荧光传感信号转换为放大的电读数,从而无需光学元件即可实现灵敏检测。无透镜设计有望实现设备小型化,并促进用于侧流测试的微流体设备的片上集成。该项目促进了对纳米级光学、生物传感技术和电路集成有深入了解的多元化科学和工程队伍的发展。该项目的成果将产生一个可扩展的解决方案,实现灵敏、独立、定量的侧流检测。这利用了现代硅集成电路的功率和规模经济,这些集成电路是在过去五十年中为高性能计算和成像而建立的,用于低成本的生物电子传感应用。所提出的方法成功的关键是通过管理生物探针上的荧光报告基团(荧光团或量子点)与光学超材料(Aim1)的共振之间的耦合,产生增强的荧光和定向光发射。由金属和介电纳米结构组成的光学超材料利用表面等离子体来控制光。超材料的成分将被设计为调节邻近荧光报告基因的自发发射率,从而提高其发射强度。此外,超材料的结构被设计为缩小光发射的辐射图案,从而允许将光引导至光电探测器以进行有效的光学探测。该项目探索基于纳米颗粒组装和薄膜沉积的新型纳米制造方法,无需复杂的光刻即可为光学超材料创建大面积纳米结构。将超材料结构单片集成到光电探测器阵列集成电路 (IC) 基板上,无需光学透镜即可检测超材料增强荧光(目标 2)。定制 CMOS 光电探测器阵列 IC 还提供所有传感器的片上信号处理和数字化功能,同时提供简单的数字读出功能。多路复用传感器将通过集成传感器基板上的探针阵列的可寻址功能化来实现。使用共面晶圆级成型技术对传感器 IC 进行微流体传输封装,将为 POC 测试提供灵敏的小型化荧光检测平台(目标 3)。拟议的工作将阐明纳米尺度上光与物质相互作用的基本原理,创建新的生物传感技术,并为光学纳米结构、微流体和 CMOS IC 的集成设计指南,以实现广泛的未来应用。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined In-Pixel Linear and Single-Photon Avalanche Diode Operation With Integrated Biasing for Wide-Dynamic-Range Optical Sensing
像素内线性和单光子雪崩二极管操作与集成偏置相结合,实现宽动态范围光学传感
- DOI:10.1109/jssc.2019.2944856
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Ouh, Hyunkyu;Shen, Boyu;Johnston, Matthew L.
- 通讯作者:Johnston, Matthew L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li-Jing Cheng其他文献
Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
- DOI:
10.1063/1.5022789 - 发表时间:
2018-04 - 期刊:
- 影响因子:3.2
- 作者:
Li-Jing Cheng - 通讯作者:
Li-Jing Cheng
Ion and Molecule Transport in Nanochannels.
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.4
- 作者:
Li-Jing Cheng - 通讯作者:
Li-Jing Cheng
Li-Jing Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li-Jing Cheng', 18)}}的其他基金
Collaborative Research: Evaporation-Driven Optofluidic Biosensors using Photonic Crystal Biosilica
合作研究:使用光子晶体生物二氧化硅的蒸发驱动光流控生物传感器
- 批准号:
1701329 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Programmable THz Devices Enabled by High-Performance Optical Spatial Modulation for Advanced Imaging and Adaptive Communications
合作研究:通过高性能光空间调制实现高级成像和自适应通信的可编程太赫兹器件
- 批准号:
1711355 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
UNS: A functional nanocomposite-based biosensor for real-time ambulatory monitoring of salivary biomarkers
UNS:一种基于功能性纳米复合材料的生物传感器,用于实时动态监测唾液生物标志物
- 批准号:
1512816 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
基于图像自适应增强与动态融合算法的数字TDI CMOS高动态范围成像方法研究
- 批准号:62005280
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于单手性碳纳米管的柔性印刷CMOS器件及相关研究
- 批准号:61874132
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
CMOS兼容增强型MIS-AlGaN/GaN HEMTs器件及其栅极可靠性的研究
- 批准号:51307150
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
60GHz及Q波段CMOS功率放大器增益增强与片上功率合成技术研究
- 批准号:61201044
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高帧频超衍射分辨宽场荧光显微成像研究
- 批准号:60878053
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10450190 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10303973 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10683085 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
CMOS THz Molecular Clock With Enhanced Stability And Energy Efficiency
具有增强稳定性和能源效率的 CMOS 太赫兹分子时钟
- 批准号:
1809917 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NEMS/MEMS and Nanomaterial-enhanced Passive Components Compatible with Advanced Nano-CMOS for Future One-chip Tunable RF Systems
NEMS/MEMS 和纳米材料增强型无源元件与先进纳米 CMOS 兼容,适用于未来单芯片可调谐射频系统
- 批准号:
151246004 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Research Grants