Nanoplasmonics-Enhanced CMOS Fluorescence Sensors for Lens-Free Multiplexed Biomolecular Detection
用于无透镜多重生物分子检测的纳米等离子体增强型 CMOS 荧光传感器
基本信息
- 批准号:1810067
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Early and accurate disease diagnosis plays a decisive role in effective clinical treatment, especially at the point of care when an immediate treatment decision most needs to be made. The canonical biomarker test format for point-of-care (POC) applications is the lateral flow assay based on paper test strips which is cheap, disposable, easy to use and requires no additional hardware. However, the advantages are obtained at the expense of low sensitivity and limited quantitative measurement results. Gold standards for genetic detection and immunoassays utilize fluorescence-based detection, which offers low detection limit, high reliability, and capability of multiplexed analysis. While highly-accurate, fluorescence detection typically requires multiple optical components, making instrumentation bulky and costly for POC tests. The goal of this project is to develop a new POC testing platform that combines the benefits of high-sensitivity and quantitative analysis of fluorescence-based assays, and the simplicity, portability, and cost-effectiveness of lateral flow tests. The platform utilizes optical metamaterials-integrated photodiode array circuits to convert the enhanced fluorescence sensing signals into amplified electrical readouts to achieve sensitive detection without optical components. The lens-free design promises device miniaturization and facilitates the on-chip integration of microfluidic devices for lateral flow tests. The project fosters the development of a diverse science and engineering workforce with a deep understanding of optics at nanoscales, biosensing technology, and circuit integration. The result of the project will lead to a scalable solution that enables a sensitive, self-contained, quantitative lateral flow assay. This leverages the power and economies of scale of modern silicon integrated circuits, built up over the previous fifty years for high-performance computation and imaging, for a low-cost, bioelectronic sensing application.The key to the success of the proposed approach is to generate enhanced fluorescence and directional light emission by managing the coupling between the fluorescent reporters (fluorophores or quantum dots) on biological probes and the resonance of an optical metamaterial (Aim1). The optical metamaterials composed of metal and dielectric nanostructures exploit surface plasmons to control light. The composition of the metamaterial will be engineered to regulate the spontaneous emission rate of proximate fluorescent reporters and thus boost their emission intensity. Also, the structure of the metamaterial is designed to narrow the radiation pattern of light emission that allows guiding the light toward the photodetector for efficient optical detection. The project explores novel nanofabrication methods based on nanoparticle assembly and thin-film depositions to create large-area nanostructures for the optical metamaterials without sophisticated lithography. Monolithic integration of the metamaterial structures onto photodetector array integrated circuit (IC) substrate allows for detection of metamaterial enhanced fluorescence without optical lenses (Aim 2). A custom CMOS photodetector array IC also provides on-chip signal processing and digitization of all sensors in parallel with a simple, digital readout. A multiplexed sensor will be achieved through addressable functionalization of probe arrays on the integrated sensor substrate. Packaging of the sensor IC with microfluidic delivery using a coplanar wafer-level molding technique will result in a sensitive, miniaturized fluorescence detection platform for POC testing (Aim 3). The proposed work will elucidate the fundamentals of light-matter interactions at nanoscales, create new biosensing technologies, and design guidelines for integration of optical nanostructures, microfluidics, and CMOS ICs for a broad set of future applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
早期,准确的疾病诊断在有效的临床治疗中起决定性作用,尤其是在需要做出最多的治疗决定时。 Canonical生物标志物测试格式(POC)应用程序是基于纸质测试条的横向流量测定法,它便宜,一次性,易于使用,不需要其他硬件。但是,优势是以低灵敏度和有限的定量测量结果获得的。遗传检测和免疫测定的黄金标准使用基于荧光的检测,该检测提供了较低的检测极限,高可靠性和多重分析的能力。虽然高度准确,但荧光检测通常需要多个光学组件,使POC测试的仪器笨重且昂贵。该项目的目的是开发一个新的POC测试平台,该平台结合了基于荧光测定的高敏性和定量分析的好处,以及横向流动测试的简单性,可移植性和成本效益。该平台利用光学超材料集成的光电二极管阵列电路将增强的荧光传感信号转换为放大的电气读数,以实现无光学组件的敏感检测。无镜头设计承诺设备小型化,并促进微流体设备的片上整合以进行横向流程测试。该项目促进了多样化的科学和工程劳动力的发展,对纳米级,生物传感技术和电路整合的光学有深刻的了解。该项目的结果将导致可扩展的解决方案,以实现敏感,独立的,定量的横向流量测定法。这利用了现代硅整合电路的规模的力量和经济,在过去的五十年中建立了高性能计算和成像,以实现低成本的,生物电性的感应应用。所提出方法成功的关键是生成增强的荧光和方向光发射(通过概率的荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)(荧光量)。光学超材料的共振(AIM1)。由金属和介电纳米结构组成的光学超材料利用表面等离子体来控制光。超材料的组成将进行设计,以调节近端荧光记者的自发排放率,从而提高其发射强度。同样,超材料的结构旨在缩小光发射的辐射模式,该模式允许将光引导朝向光电探测器以进行有效的光学检测。该项目探索了基于纳米颗粒组件和薄膜沉积的新型纳米化方法,以创建用于光学超材料的大区块纳米结构,而无需复杂的光刻。超材料结构在光电探测器阵列阵列(IC)底物上的单片整合允许检测超材料增强的增强荧光,而无需光透镜(AIM 2)。自定义CMOS光电探测器阵列IC还与简单的数字读数并联提供了所有传感器的芯片信号处理和数字化。通过在集成传感器基板上对探针阵列的可寻址功能化来实现多路复用传感器。使用Coplanar晶圆级成型技术将传感器IC包装在微流体传递中,将导致一个敏感的,微型的荧光检测平台进行POC测试(AIM 3)。拟议的工作将阐明纳米级相互作用的基本面,创建新的生物传感技术,以及用于整合光学纳米结构,微流体和CMOS IC的设计指南,以弥补NSF的法定委员和范围的范围,以弥补范围的范围,以表现出众多的范围。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined In-Pixel Linear and Single-Photon Avalanche Diode Operation With Integrated Biasing for Wide-Dynamic-Range Optical Sensing
像素内线性和单光子雪崩二极管操作与集成偏置相结合,实现宽动态范围光学传感
- DOI:10.1109/jssc.2019.2944856
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Ouh, Hyunkyu;Shen, Boyu;Johnston, Matthew L.
- 通讯作者:Johnston, Matthew L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li-Jing Cheng其他文献
Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
- DOI:
10.1063/1.5022789 - 发表时间:
2018-04 - 期刊:
- 影响因子:3.2
- 作者:
Li-Jing Cheng - 通讯作者:
Li-Jing Cheng
Ion and Molecule Transport in Nanochannels.
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.4
- 作者:
Li-Jing Cheng - 通讯作者:
Li-Jing Cheng
Li-Jing Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li-Jing Cheng', 18)}}的其他基金
Collaborative Research: Evaporation-Driven Optofluidic Biosensors using Photonic Crystal Biosilica
合作研究:使用光子晶体生物二氧化硅的蒸发驱动光流控生物传感器
- 批准号:
1701329 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Programmable THz Devices Enabled by High-Performance Optical Spatial Modulation for Advanced Imaging and Adaptive Communications
合作研究:通过高性能光空间调制实现高级成像和自适应通信的可编程太赫兹器件
- 批准号:
1711355 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
UNS: A functional nanocomposite-based biosensor for real-time ambulatory monitoring of salivary biomarkers
UNS:一种基于功能性纳米复合材料的生物传感器,用于实时动态监测唾液生物标志物
- 批准号:
1512816 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
面向CMOS电路的硅基氮化镓p沟道增强型异质结场效应晶体管研究
- 批准号:62374137
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于图像自适应增强与动态融合算法的数字TDI CMOS高动态范围成像方法研究
- 批准号:62005280
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于单手性碳纳米管的柔性印刷CMOS器件及相关研究
- 批准号:61874132
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
CMOS兼容增强型MIS-AlGaN/GaN HEMTs器件及其栅极可靠性的研究
- 批准号:51307150
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
60GHz及Q波段CMOS功率放大器增益增强与片上功率合成技术研究
- 批准号:61201044
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10450190 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10303973 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10683085 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
CMOS THz Molecular Clock With Enhanced Stability And Energy Efficiency
具有增强稳定性和能源效率的 CMOS 太赫兹分子时钟
- 批准号:
1809917 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
NEMS/MEMS and Nanomaterial-enhanced Passive Components Compatible with Advanced Nano-CMOS for Future One-chip Tunable RF Systems
NEMS/MEMS 和纳米材料增强型无源元件与先进纳米 CMOS 兼容,适用于未来单芯片可调谐射频系统
- 批准号:
151246004 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Research Grants