SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems

SaTC:核心:前沿:协作:机器学习系统的端到端可信度

基本信息

  • 批准号:
    1804829
  • 负责人:
  • 金额:
    $ 70.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This frontier project establishes the Center for Trustworthy Machine Learning (CTML), a large-scale, multi-institution, multi-disciplinary effort whose goal is to develop scientific understanding of the risks inherent to machine learning, and to develop the tools, metrics, and methods to manage and mitigate them. The center is led by a cross-disciplinary team developing unified theory, algorithms and empirical methods within complex and ever-evolving ML approaches, application domains, and environments. The science and arsenal of defensive techniques emerging within the center will provide the basis for building future systems in a more trustworthy and secure manner, as well as fostering a long term community of research within this essential domain of technology. The center has a number of outreach efforts, including a massive open online course (MOOC) on this topic, an annual conference, and broad-based educational initiatives. The investigators continue their ongoing efforts at broadening participation in computing via a joint summer school on trustworthy ML aimed at underrepresented groups, and by engaging in activities for high school students across the country via a sequence of webinars advertised through the She++ network and other organizations.The center focuses on three interconnected and parallel investigative directions that represent the different classes of attacks attacking ML systems: inference attacks, training attacks, and abuses of ML. The first direction explores inference time security, namely methods to defend a trained model from adversarial inputs. This effort emphasizes developing formally grounded measurements of robustness against adversarial examples (defenses), as well as understanding the limits and costs of attacks. The second research direction aims to develop rigorously grounded measures of robustness to attacks that corrupt the training data and new training methods that are robust to adversarial manipulation. The final direction tackles the general security implications of sophisticated ML algorithms including the potential abuses of generative ML models, such as models that generate (fake) content, as well as data mechanisms to prevent the theft of a machine learning model by an adversary who interacts with the model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个边界项目建立了值得信赖的机器学习中心(CTML),这是一个大规模,多机构,多学科的努力,其目标是对机器学习固有的风险发展科学理解,并开发工具,指标和方法来管理和缓解它们。 该中心由一个跨学科团队领导,在复杂且不断发展的ML方法,应用领域和环境中开发统一理论,算法和经验方法。中心内出现的防御技术的科学和武器库将为以更可信赖和安全的方式构建未来系统,并在这一基本技术领域内建立长期的研究社区。该中心有许多外展工作,包括有关此主题的大规模开放在线课程(MOOC),年度会议和基于广泛的教育计划。调查人员继续进行持续的努力,以通过一所信任的ML旨在扩大夏季学校的参与计算,旨在旨在代表性不足的群体,并通过通过SHE ++网络和其他组织进行的一系列网络研讨会为全国各地的高中生进行活动,该中心侧重于三个互联和平行的攻击攻击攻击的攻击,攻击攻击的攻击性ML攻击,攻击攻击的攻击效果: ML。 第一个方向探讨了推理时间安全性,即捍卫训练有素的模型免受对抗输入的方法。这项努力强调了针对对抗性例子(防御)的鲁棒性正式衡量,并了解攻击的限制和成本。第二个研究方向旨在制定严格扎根的鲁棒性衡量标准,以破坏训练数据和对对抗性操纵的新训练方法的攻击。 最终方向解决了复杂的ML算法的一般安全含义,包括生成ML模型的潜在滥用,例如产生(假)内容的模型,以及防止与该模型互动的对手盗窃机器学习模型的数据机制,这反映了NSF的法定任务和经过评估的范围,这是通过评估的范围来进行的。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Empirical Risk Minimization with Tolerance
  • DOI:
    10.48550/arxiv.2210.00635
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robi Bhattacharjee;Max Hopkins;Akash Kumar;Hantao Yu;Kamalika Chaudhuri
  • 通讯作者:
    Robi Bhattacharjee;Max Hopkins;Akash Kumar;Hantao Yu;Kamalika Chaudhuri
A Closer Look at Accuracy vs. Robustness
  • DOI:
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao-Yuan Yang;Cyrus Rashtchian;Hongyang Zhang;R. Salakhutdinov;Kamalika Chaudhuri
  • 通讯作者:
    Yao-Yuan Yang;Cyrus Rashtchian;Hongyang Zhang;R. Salakhutdinov;Kamalika Chaudhuri
Sample Complexity of Adversarially Robust Linear Classification on Separated Data
  • DOI:
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robi Bhattacharjee;S. Jha;Kamalika Chaudhuri
  • 通讯作者:
    Robi Bhattacharjee;S. Jha;Kamalika Chaudhuri
When are Non-Parametric Methods Robust?
  • DOI:
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robi Bhattacharjee;Kamalika Chaudhuri
  • 通讯作者:
    Robi Bhattacharjee;Kamalika Chaudhuri
Connecting Interpretability and Robustness in Decision Trees through Separation
  • DOI:
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michal Moshkovitz;Yao-Yuan Yang;Kamalika Chaudhuri
  • 通讯作者:
    Michal Moshkovitz;Yao-Yuan Yang;Kamalika Chaudhuri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamalika Chaudhuri其他文献

Privacy Amplification by Subsampling in Time Domain
通过时域二次采样实现隐私放大
A Two-Stage Active Learning Algorithm for k-Nearest Neighbors
k-最近邻的两阶段主动学习算法
Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds
通过 Hammersley-Chapman-Robbins 界限保证机密性
  • DOI:
    10.48550/arxiv.2404.02866
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamalika Chaudhuri;Chuan Guo;L. Maaten;Saeed Mahloujifar;M. Tygert
  • 通讯作者:
    M. Tygert
Composition properties of inferential privacy for time-series data
时间序列数据推理隐私的组成属性
Agnostic Multi-Group Active Learning
不可知多组主动学习
  • DOI:
    10.48550/arxiv.2306.01922
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Rittler;Kamalika Chaudhuri
  • 通讯作者:
    Kamalika Chaudhuri

Kamalika Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamalika Chaudhuri', 18)}}的其他基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Robust and Private Federated Analytics on Networked Data
SaTC:核心:小型:网络数据的稳健且私密的联合分析
  • 批准号:
    2241100
  • 财政年份:
    2023
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
CCF: CIF: Small: Interactive Learning from Noisy, Heterogeneous Feedback
CCF:CIF:小型:从嘈杂、异构的反馈中进行交互式学习
  • 批准号:
    1719133
  • 财政年份:
    2017
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: New Directions in Spectral Learning with Applications to Comparative Epigenomics
RI:小型:协作研究:光谱学习的新方向及其在比较表观基因组学中的应用
  • 批准号:
    1617157
  • 财政年份:
    2016
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Standard Grant
CAREER: Differentially-Private Machine Learning with Applications to Biomedical Informatics
职业:差分隐私机器学习及其在生物医学信息学中的应用
  • 批准号:
    1253942
  • 财政年份:
    2013
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于核受体靶标垂钓的活性有机污染物高通量筛选方法的研究及应用
  • 批准号:
    22306197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镁原子诱导异核双金属催化剂的制备及其氧还原性能研究
  • 批准号:
    22305054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双单亲遗传贝类线粒体与核氧化磷酸化基因动态协作调控机制
  • 批准号:
    32302965
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
臂旁核-丘脑室旁核神经环路调控感觉刺激诱发觉醒的作用及机制研究
  • 批准号:
    82371493
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
伏隔核-腹侧被盖区-基底外侧杏仁核神经环路在小鼠氯胺酮成瘾中的机制研究
  • 批准号:
    82371900
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    2343611
  • 财政年份:
    2022
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804648
  • 财政年份:
    2018
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1805310
  • 财政年份:
    2018
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804794
  • 财政年份:
    2018
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804222
  • 财政年份:
    2018
  • 资助金额:
    $ 70.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了