SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
基本信息
- 批准号:1804648
- 负责人:
- 金额:$ 69.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This frontier project establishes the Center for Trustworthy Machine Learning (CTML), a large-scale, multi-institution, multi-disciplinary effort whose goal is to develop scientific understanding of the risks inherent to machine learning, and to develop the tools, metrics, and methods to manage and mitigate them. The center is led by a cross-disciplinary team developing unified theory, algorithms and empirical methods within complex and ever-evolving ML approaches, application domains, and environments. The science and arsenal of defensive techniques emerging within the center will provide the basis for building future systems in a more trustworthy and secure manner, as well as fostering a long term community of research within this essential domain of technology. The center has a number of outreach efforts, including a massive open online course (MOOC) on this topic, an annual conference, and broad-based educational initiatives. The investigators continue their ongoing efforts at broadening participation in computing via a joint summer school on trustworthy ML aimed at underrepresented groups, and by engaging in activities for high school students across the country via a sequence of webinars advertised through the She++ network and other organizations.The center focuses on three interconnected and parallel investigative directions that represent the different classes of attacks attacking ML systems: inference attacks, training attacks, and abuses of ML. The first direction explores inference time security, namely methods to defend a trained model from adversarial inputs. This effort emphasizes developing formally grounded measurements of robustness against adversarial examples (defenses), as well as understanding the limits and costs of attacks. The second research direction aims to develop rigorously grounded measures of robustness to attacks that corrupt the training data and new training methods that are robust to adversarial manipulation. The final direction tackles the general security implications of sophisticated ML algorithms including the potential abuses of generative ML models, such as models that generate (fake) content, as well as data mechanisms to prevent the theft of a machine learning model by an adversary who interacts with the model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Understanding Limitations of Pixel Discretization Against Adversarial Attacks
- DOI:10.1109/eurosp.2019.00042
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Jiefeng Chen;Xi Wu;Vaibhav Rastogi;Yingyu Liang;S. Jha
- 通讯作者:Jiefeng Chen;Xi Wu;Vaibhav Rastogi;Yingyu Liang;S. Jha
Overfitting, robustness, and malicious algorithms: A study of potential causes of privacy risk in machine learning
- DOI:10.3233/jcs-191362
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Samuel Yeom;Irene Giacomelli;Alan Menaged;Matt Fredrikson;S. Jha
- 通讯作者:Samuel Yeom;Irene Giacomelli;Alan Menaged;Matt Fredrikson;S. Jha
Machine learning and logic: a new frontier in artificial intelligence
- DOI:10.1007/s10703-023-00430-1
- 发表时间:2023-06-14
- 期刊:
- 影响因子:0.8
- 作者:Ganesh,Vijay;Seshia,Sanjit A. A.;Jha,Somesh
- 通讯作者:Jha,Somesh
Semantic Adversarial Deep Learning
- DOI:10.1109/mdat.2020.2968274
- 发表时间:2018-04
- 期刊:
- 影响因子:2
- 作者:S. Seshia;S. Jha;T. Dreossi
- 通讯作者:S. Seshia;S. Jha;T. Dreossi
Towards Effective Differential Privacy Communication for Users’ Data Sharing Decision and Comprehension
- DOI:10.1109/sp40000.2020.00088
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Aiping Xiong;Tianhao Wang;Ninghui Li;S. Jha
- 通讯作者:Aiping Xiong;Tianhao Wang;Ninghui Li;S. Jha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Somesh Jha其他文献
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
适应自我评估以提高法学硕士的选择性预测
- DOI:
10.48550/arxiv.2310.11689 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiefeng Chen;Jinsung Yoon;Sayna Ebrahimi;Sercan Ö. Arik;Tomas Pfister;Somesh Jha - 通讯作者:
Somesh Jha
Bilevel Relations and Their Applications to Data Insights
双层关系及其在数据洞察中的应用
- DOI:
10.48550/arxiv.2311.04824 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xi Wu;Xiangyao Yu;Shaleen Deep;Ahmed Mahmood;Uyeong Jang;Stratis Viglas;Somesh Jha;J. Cieslewicz;Jeffrey F. Naughton - 通讯作者:
Jeffrey F. Naughton
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek - 通讯作者:
Turek
rideApp RideSharing Application smsApp SMS Application mapApp Map Application SearchActivity MsgActivity action : VIEW dataScheme : geo action
rideApp 共乘应用程序 smsApp 短信应用程序 mapApp 地图应用程序 SearchActivity MsgActivity 操作:查看数据方案:地理操作
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jinman Zhao;Vaibhav Rastogi;Somesh Jha;Damien Octeau - 通讯作者:
Damien Octeau
Somesh Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Somesh Jha', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
- 批准号:
1931364 - 财政年份:2020
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
FMitF: Collaborative Research: Formal Methods for Machine Learning System Design
FMITF:协作研究:机器学习系统设计的形式化方法
- 批准号:
1836978 - 财政年份:2018
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Scaling and Prioritizing Market-Sized Application Analysis
TWC:媒介:协作:扩展和优先考虑市场规模的应用程序分析
- 批准号:
1563831 - 财政年份:2016
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
TWC: Phase: Medium: Collaborative Proposal: Understanding and Exploiting Parallelism in Deep Packet Inspection on Concurrent Architectures
TWC:阶段:中:协作提案:理解和利用并发架构深度数据包检查中的并行性
- 批准号:
1228782 - 财政年份:2012
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Extending Smart-Phone Application Analysis
TWC:媒介:协作:扩展智能手机应用程序分析
- 批准号:
1228620 - 财政年份:2012
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Building Trustworthy Applications for Mobile Devices
TC:媒介:协作研究:为移动设备构建值得信赖的应用程序
- 批准号:
1064944 - 财政年份:2011
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
TC:Medium:Collaborative Research:Techniques to Retrofit Legacy Code with Security
TC:中:协作研究:安全改造遗留代码的技术
- 批准号:
0904831 - 财政年份:2009
- 资助金额:
$ 69.55万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: Towards Behavior-Based Malware Detection
合作研究:CT-T:迈向基于行为的恶意软件检测
- 批准号:
0627501 - 财政年份:2007
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
CT-ISG: Alternate representation of NIDS/NIPS signatures for fast matching
CT-ISG:NIDS/NIPS 签名的替代表示形式,用于快速匹配
- 批准号:
0716538 - 财政年份:2007
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
CAREER: Combating Malicious Behavior in Commodity Software
职业:打击商品软件中的恶意行为
- 批准号:
0448476 - 财政年份:2005
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
相似国自然基金
去核干细胞系统定向递送质粒体内制备CAR-M治疗脑胶质瘤的研究
- 批准号:82373287
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
晶格畸变与核壳结构协同调控生物质化学链制氢载氧体晶格氧活性及循环稳定性机制研究
- 批准号:22308366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
五行音乐羽调对恐惧模型小鼠5-HT/EGR-1/ChAT及“杏仁核”谷氨酸毒性变化的研究
- 批准号:82374556
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A型流感病毒mRNA出核转运分子机制的研究
- 批准号:82372224
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高分子加工过程中核壳粒子的形成和演化及其对复合材料刚韧平衡的影响
- 批准号:22373099
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
2343611 - 财政年份:2022
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1805310 - 财政年份:2018
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804829 - 财政年份:2018
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804794 - 财政年份:2018
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804222 - 财政年份:2018
- 资助金额:
$ 69.55万 - 项目类别:
Continuing Grant