RI: Small: Collaborative Research: New Directions in Spectral Learning with Applications to Comparative Epigenomics

RI:小型:协作研究:光谱学习的新方向及其在比较表观基因组学中的应用

基本信息

  • 批准号:
    1617157
  • 负责人:
  • 金额:
    $ 27.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to design algorithms and statistical tools to build complex probabilistic models from massive quantities of data in a computationally efficient manner. This work is motivated by an important current problem in genomics, namely comparative epigenetics. While every cell in an organism has the same DNA sequence, epigenetic marks on the genome are known to be highly correlated with variation between cells. A pressing question in biology is to compare the epigenetic marks across different cell types to understand these differences. While massive amounts of data has been generated for this purpose, there is a great need for computational tools that can operate on this data and provide biologically meaningful solutions. This work will thus advance the state-of-the-art in the analysis of large complex data sets and advance the field of epigenomics. The broader impact of the work includes organizing workshops and tutorials at machine learning and bioinformatics venues, involving undergraduate students in research, and releasing open source software for the community. Specifically, this project will focus on spectral learning, which has recently provided principled and computationally efficient methods for learning parameters of probabilistic graphical models. While spectral learning methods are known for some simple latent variable models, a major barrier to realizing the potential of spectral learning in real-world applications is the lack of associated statistical tools such as regularization and hypothesis testing that connect these methods in a principled manner to end-to-end application frameworks. This project proposes to develop such statistical tools by integrating modern spectral learning with the classical statistical literature in econometrics on Generalized Method of Moments. The project proposes to formulate the statistical generalized method of moment procedures for complex graphical models in the context of spectral learning as constrained optimization problems and proposes ways of solving these problems. Finally, the novel algorithms developed will be directly applied to model epigenomics data sets from the ENCODE and Roadmap Epigenomics Projects to yield methods that can operate on the massive quantities of data and provide biologically meaningful solutions. These algorithms and software have the potential to have a widespread impact on the understanding of complex human diseases such as cancer and mental disorders. This will provide a basis for designing therapeutics for these diseases and advance society towards a future of Personalized Medicine.
该项目的目的是设计算法和统计工具,以计算有效的方式从大量数据中构建复杂的概率模型。这项工作是由基因组学当前重要的问题(即比较表观遗传学)引起的。尽管生物体中的每个细胞都具有相同的DNA序列,但已知基因组上的表观遗传标记与细胞之间的变异高度相关。生物学中的一个紧迫问题是比较不同细胞类型的表观遗传标记,以了解这些差异。尽管为此目的生成了大量数据,但对于可以在此数据上运行并提供具有生物学意义的解决方案的计算工具非常需要。因此,这项工作将推进大型复杂数据集分析并推进表观基因组学领域的最新作品。这项工作的更广泛影响包括在机器学习和生物信息学场所组织研讨会和教程,涉及研究生研究,并为社区发布开源软件。具体而言,该项目将集中在光谱学习上,光谱学习最近为概率图形模型的学习参数提供了原则性和计算有效的方法。虽然光谱学习方法是一些简单的潜在变量模型已知的,但在现实世界应用中实现光谱学习潜力的主要障碍是缺乏相关的统计工具,例如正则化和假设测试,这些工具和假设测试以原则上的方式将这些方法连接到端到端应用程序框架。该项目提议通过将现代光谱学习与经典的瞬间方法中的经典统计文献相结合,以开发此类统计工具。该项目建议在光谱学习的背景下为复杂的图形模型制定统计通用方法,作为受限的优化问题,并提出了解决这些问题的方法。最后,开发的新型算法将直接应用于模型的表观基因组学数据集,从编码和路线图表观基因组学项目中,以产生可以根据大量数据运行并提供具有生物学意义的解决方案的方法。这些算法和软件有可能对对复杂人类疾病(如癌症和精神疾病)的理解产生广泛影响。这将为这些疾病设计治疗学并迈向个性化医学的未来提供基础。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Expressive Power of a Class of Normalizing Flow Models
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhifeng Kong;Kamalika Chaudhuri
  • 通讯作者:
    Zhifeng Kong;Kamalika Chaudhuri
A Three Sample Hypothesis Test for Evaluating Generative Models
用于评估生成模型的三样本假设检验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamalika Chaudhuri其他文献

Privacy Amplification by Subsampling in Time Domain
通过时域二次采样实现隐私放大
A Two-Stage Active Learning Algorithm for k-Nearest Neighbors
k-最近邻的两阶段主动学习算法
Guarantees of confidentiality via Hammersley-Chapman-Robbins bounds
通过 Hammersley-Chapman-Robbins 界限保证机密性
  • DOI:
    10.48550/arxiv.2404.02866
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamalika Chaudhuri;Chuan Guo;L. Maaten;Saeed Mahloujifar;M. Tygert
  • 通讯作者:
    M. Tygert
Composition properties of inferential privacy for time-series data
时间序列数据推理隐私的组成属性
Agnostic Multi-Group Active Learning
不可知多组主动学习
  • DOI:
    10.48550/arxiv.2306.01922
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Rittler;Kamalika Chaudhuri
  • 通讯作者:
    Kamalika Chaudhuri

Kamalika Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamalika Chaudhuri', 18)}}的其他基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Robust and Private Federated Analytics on Networked Data
SaTC:核心:小型:网络数据的稳健且私密的联合分析
  • 批准号:
    2241100
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804829
  • 财政年份:
    2018
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Continuing Grant
CCF: CIF: Small: Interactive Learning from Noisy, Heterogeneous Feedback
CCF:CIF:小型:从嘈杂、异构的反馈中进行交互式学习
  • 批准号:
    1719133
  • 财政年份:
    2017
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
CAREER: Differentially-Private Machine Learning with Applications to Biomedical Informatics
职业:差分隐私机器学习及其在生物医学信息学中的应用
  • 批准号:
    1253942
  • 财政年份:
    2013
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了