Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
基本信息
- 批准号:2232054
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The American Court system is a large and complex socio-technical system that handles millions of criminal cases every year. However, the current pretrial scheduling process is plagued by a staggering one in five defendants missing court dates. This imposes high costs on the judiciary as an institution, and can be particularly harmful to defendants who have insecure employment situations, care-giving responsibilities, or lack transportation to court. These disparate impacts have profound negative effects. To address these issues, this project investigates Fair and Explainable Learning to Schedule, a novel approach that tightly integrates machine learning, constrained optimization, and knowledge representation to learn schedules with certifiable fairness guarantees and enable neuro-symbolic reasoning to provide meaningful and refinable explanations. The proposed research will develop new tools to ensure that pretrial scheduling can decrease nonappearance and be fair to all defendants equally and has thus the potential to have significant societal benefits.From a scientific standpoint, this project will develop a new generation of integrated learning and optimization tools as well as explanation tools to realize the potential of fairer and more equitable schedules. The proposed Fair and Explainable Learning to Schedule will make key contributions in several areas, including: (1) enabling deep learning systems to handle combinatorial structures to represent schedules; (2) developing end-to-end training procedures that integrate constrained optimization within a learning pipeline; (3) providing guarantees on the satisfaction of user-specified fairness notions in the learning process; (4) developing neuro-symbolic approaches to provide explanations about scheduling and fairness properties; (5) integrating learning and logic-based reasoning to provide personalized explanations at appropriate abstraction levels to users; and (6) developing new datasets for fair pretrial court scheduling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国法院系统是一个庞大而复杂的社会技术系统,每年处理数百万起刑事案件。然而,目前的审前安排过程受到五分之一被告缺席开庭日期的困扰。这给司法机构作为一个机构带来了高昂的成本,并且对于就业状况不稳定、有照顾责任或缺乏前往法庭的交通的被告尤其有害。这些不同的影响会产生深远的负面影响。为了解决这些问题,该项目研究了“公平且可解释的学习计划”,这是一种紧密集成机器学习、约束优化和知识表示的新颖方法,以通过可证明的公平性保证来学习计划,并使神经符号推理能够提供有意义且可完善的解释。拟议的研究将开发新的工具,以确保审前安排能够减少缺席情况,并平等地对待所有被告,从而有可能产生重大的社会效益。从科学的角度来看,该项目将开发新一代的集成学习和优化工具以及解释工具,以实现更公平和更公平的时间表的潜力。拟议的“公平且可解释的学习计划”将在多个领域做出关键贡献,包括:(1)使深度学习系统能够处理代表计划的组合结构; (2) 开发将约束优化集成到学习管道中的端到端训练程序; (3)为学习过程中用户指定的公平观念的满足提供保证; (4) 开发神经符号方法来提供有关调度和公平性属性的解释; (5)整合学习和基于逻辑的推理,以适当的抽象级别向用户提供个性化解释; (6) 开发新的数据集以实现公平的审前法庭安排。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
End-to-End Optimization and Learning for Multiagent Ensembles
- DOI:10.48550/arxiv.2211.00251
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
- 通讯作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
Differentiable Model Selection for Ensemble Learning
- DOI:10.24963/ijcai.2023/217
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
- 通讯作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
Analyzing and Enhancing the Backward-Pass Convergence of Unrolled Optimization
分析和增强展开优化的后向收敛性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kotary, James;Christopher, Jacob;Dinh, My H;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinando Fioretto其他文献
A Large Neighboring Search Schema for Multi-agent Optimization
用于多智能体优化的大型邻近搜索模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Khoi D. Hoang;Ferdinando Fioretto;W. Yeoh;Enrico Pontelli;R. Zivan - 通讯作者:
R. Zivan
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately
基于约束的差分隐私:私下发布最优潮流基准 - 私下发布最优潮流基准
- DOI:
10.1007/978-3-319-93031-2_15 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Ferdinando Fioretto;Pascal Van Hentenryck - 通讯作者:
Pascal Van Hentenryck
Personalized Privacy Auditing and Optimization at Test Time
测试时的个性化隐私审核和优化
- DOI:
10.48550/arxiv.2302.00077 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cuong Tran;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
Solving DCOPs with Distributed Large Neighborhood Search
通过分布式大邻域搜索解决 DCOP
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan - 通讯作者:
R. Zivan
PPSM: A Privacy-Preserving Stackelberg Mechanism: Privacy Guarantees for the Coordination of Sequential Electricity and Gas Markets
- DOI:
- 发表时间:
2019-11 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
Ferdinando Fioretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinando Fioretto', 18)}}的其他基金
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2345483 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2246464 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2334707 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2401285 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2143706 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2133169 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
- 批准号:82171602
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant