CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
基本信息
- 批准号:2401285
- 负责人:
- 金额:$ 51.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Constrained optimization is used daily in our society with applications ranging from supply chains and logistics to electricity grids, organ exchanges, marketing campaigns, and manufacturing. Although these problems are often computationally challenging even for medium-sized instances, they constitute fundamental building blocks for the optimization of many industrial processes with profound effects on our society and economy. Yet the complexity of many constrained optimization problems often prevents them from being effectively adopted in contexts where many instances must be solved over a long-term horizon or when solutions must be produced under stringent time constraints. This project proposes a new paradigm that tightly integrates fundamental optimization techniques with machine learning algorithms to solve constraint optimization problems in real-time. This research holds the promise to create a new and transformative generation of optimization tools that solve hard constraint optimization problems under stringent time constraints leading to significant economic and societal benefits. From a scientific standpoint, this project will develop a new integration of optimization and machine learning tools that deliver high-quality solutions to large-scale hard constraint optimization problems at unprecedented computational speeds. The proposed end-to-end Constraint Optimization Learning (e2e-COL) contributes to new scientific knowledge along three main directions: (1) It accommodates the presence of domain knowledge or complex problem constraints by combining fundamental methodologies from optimization into the training cycle of deep neural networks. (2) It addresses the need of generating large datasets to train high-quality models by devising efficient data generation procedures, linking methodologies from optimization with the model learning ability, and developing semi-supervised models requiring small amounts of labeled data. (3) Finally, to scale to large problem instances, this proposal enables e2e-COL to learn decompositions and approximations of the problem structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。每天在我们的社会中使用优化,从供应链和物流到电网,器官交流,营销活动和制造业的申请。尽管这些问题即使对于中型实例,这些问题也通常在计算上具有挑战性,但它们构成了优化许多对我们的社会和经济产生深远影响的工业过程的基本组成部分。然而,许多受约束优化问题的复杂性通常会阻止它们在必须在长期范围内解决许多实例或在严格的时间限制下生产解决方案的情况下有效地采用。该项目提出了一种新的范式,该范式将基本优化技术与机器学习算法紧密整合在一起,以实时解决约束优化问题。这项研究有望创建一种新的和变革性的优化工具,该工具在严格的时间限制下解决严重的约束优化问题,从而带来重大的经济和社会利益。从科学的角度来看,该项目将开发出优化和机器学习工具的新集成,以在前所未有的计算速度下为大规模硬约束优化问题提供高质量的解决方案。拟议的端到端约束优化学习(E2E-COL)沿三个主要方向有助于新的科学知识:(1)通过将基本方法结合到深层神经网络的训练周期中,它可以适应领域知识或复杂的问题约束。 (2)它通过设计有效的数据生成程序,将方法从优化与模型学习能力联系起来,并开发需要少量标记数据的半监督模型来解决生成大型数据集以训练高质量模型的需求。 (3)最后,为了扩展大型问题实例,该提案使E2E-COL能够学习问题结构的分解和近似值。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data Minimization at Inference Time
推理时的数据最小化
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tran, Cuong;Ferdinando Fioretto
- 通讯作者:Ferdinando Fioretto
Price-Aware Deep Learning for Electricity Markets
电力市场的价格感知深度学习
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dvorkin, Vladimir;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Finding ε and δ of Traditional Disclosure Control Systems
寻找传统披露控制系统的 ε 和 δ
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Das, Saswat;Zhu, Keyu;Task, Christine;Van Hentenryck, Pascal;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Learning Fair Ranking Policies via Differentiable Optimization of Ordered Weighted Averages
通过有序加权平均值的可微优化来学习公平排名策略
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dinh, My H.;Kotary, James;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Disparate Impact on Group Accuracy of Linearization for Private Inference
- DOI:10.48550/arxiv.2402.03629
- 发表时间:2024-02
- 期刊:
- 影响因子:0
- 作者:Saswat Das;Marco Romanelli;Ferdinando Fioretto
- 通讯作者:Saswat Das;Marco Romanelli;Ferdinando Fioretto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinando Fioretto其他文献
A Large Neighboring Search Schema for Multi-agent Optimization
用于多智能体优化的大型邻近搜索模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Khoi D. Hoang;Ferdinando Fioretto;W. Yeoh;Enrico Pontelli;R. Zivan - 通讯作者:
R. Zivan
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately
基于约束的差分隐私:私下发布最优潮流基准 - 私下发布最优潮流基准
- DOI:
10.1007/978-3-319-93031-2_15 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Ferdinando Fioretto;Pascal Van Hentenryck - 通讯作者:
Pascal Van Hentenryck
Personalized Privacy Auditing and Optimization at Test Time
测试时的个性化隐私审核和优化
- DOI:
10.48550/arxiv.2302.00077 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cuong Tran;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
Solving DCOPs with Distributed Large Neighborhood Search
通过分布式大邻域搜索解决 DCOP
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan - 通讯作者:
R. Zivan
PPSM: A Privacy-Preserving Stackelberg Mechanism: Privacy Guarantees for the Coordination of Sequential Electricity and Gas Markets
- DOI:
- 发表时间:
2019-11 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
Ferdinando Fioretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinando Fioretto', 18)}}的其他基金
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2246464 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2345483 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2334707 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2143706 - 财政年份:2022
- 资助金额:
$ 51.54万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2133169 - 财政年份:2021
- 资助金额:
$ 51.54万 - 项目类别:
Standard Grant
相似国自然基金
真菌特异的内吞作用相关蛋白End3发挥作用的结构研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
绿色轻固结尾矿基地质聚合物的凝胶差异和重金属固定机理研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
峨眉山玄武岩喷发持续时间的研究:来自古地磁学的约束
- 批准号:41804068
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
一类内含子来源的长非编码RNA的加工成熟机制及功能研究
- 批准号:31271376
- 批准年份:2012
- 资助金额:90.0 万元
- 项目类别:面上项目
从PBMC-β-END-μ-阿片受体途径探讨华蟾素治疗癌痛的外周机制
- 批准号:81173612
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 51.54万 - 项目类别:
Continuing Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 51.54万 - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 51.54万 - 项目类别:
Continuing Grant
CAREER: End-to-End Active Region-based Heliospheric Forecasting System Using Multi-spacecraft Data and Machine Learning
职业:使用多航天器数据和机器学习的基于端对端活动区域的日光层预报系统
- 批准号:
2240022 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别:
Continuing Grant
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 51.54万 - 项目类别: