EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals

EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学

基本信息

  • 批准号:
    1753380
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Antiferromagnets hold promise in spintronics, due to the unique advantages over ferromagnets, such as high phase transition temperatures and null stray field. These characteristics make antiferromagnet appealing for high-density integrated devices, because each magnetic bit is robust against thermal and environmental magnetic field perturbation, and adjacent bits does not interfere mutually. However, zero-magnetization, an intrinsic attribute of antiferromagnet, usually is considered to be a primary factor limiting its applications. Despite of zero-magnetization, the Fermi surface electrons can be 100% spin-polarized, highly desirable for high-efficiency spintronic devices. Through rational material design of antiferromagnetic half metals, a novel type of spin field effect transistor can be realized. The work will fundamentally advance the nanoscale spintronics and the applications in information processing and storage. This project supports the study of a novel type of two-dimensional materials, antiferromagnetic half metals, and the development of spin field effect transistors. The study can fundamentally impact the state of the art spintronics and the related applications in information processing and storage. This work would also provide an excellent platform for education activities. Such an interdisciplinary research brings together researchers from material scientists, physicists, and electronic engineers. It requires concerted efforts to design and synthesize the promising antiferromagnetic materials, fabricate nanoscale transistors, and measure and optimize the device performance.
由于相对于铁磁体具有独特的优势,例如高相变温度和零杂散场,反铁磁体在自旋电子学中前景广阔。这些特性使得反铁磁体对于高密度集成器件具有吸引力,因为每个磁位对于热和环境磁场扰动都很鲁棒,并且相邻位不会相互干扰。然而,反铁磁体的固有属性零磁化通常被认为是限制其应用的主要因素。尽管为零磁化,费米表面电子可以 100% 自旋极化,这对于高效自旋电子器件来说是非常理想的。通过反铁磁半金属的合理材料设计,可以实现一种新型的自旋场效应晶体管。这项工作将从根本上推进纳米级自旋电子学及其在信息处理和存储方面的应用。该项目支持新型二维材料、反铁磁半金属的研究以及自旋场效应晶体管的开发。该研究可以从根本上影响最先进的自旋电子学以及信息处理和存储方面的相关应用。这项工作也将为教育活动提供一个极好的平台。这种跨学科研究汇集了材料科学家、物理学家和电子工程师的研究人员。它需要共同努力来设计和合成有前景的反铁磁材料、制造纳米级晶体管以及测量和优化器件性能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Room-Temperature Giant Stark Effect of Single Photon Emitter in van der Waals Material
范德华材料中单光子发射器的室温巨斯塔克效应
  • DOI:
    10.1021/acs.nanolett.9b02640
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Xia, Yang;Li, Quanwei;Kim, Jeongmin;Bao, Wei;Gong, Cheng;Yang, Sui;Wang, Yuan;Zhang, Xiang
  • 通讯作者:
    Zhang, Xiang
Enhanced ferroelectricity in ultrathin films grown directly on silicon
直接在硅上生长的超薄膜的增强铁电性
  • DOI:
    10.1038/s41586-020-2208-x
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    S. Cheema;D. Kwon;N. Shanker;R. dos Reis;S. Hsu;Jun Xiao;Haigang Zhang;Ryan Wagner;Adhiraj
  • 通讯作者:
    Adhiraj
Epitaxial Single-Layer MoS 2 on GaN with Enhanced Valley Helicity
具有增强谷螺旋度的 GaN 上外延单层 MoS 2
  • DOI:
    10.1002/adma.201703888
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Wan, Yi;Xiao, Jun;Li, Jingzhen;Fang, Xin;Zhang, Kun;Fu, Lei;Li, Pan;Song, Zhigang;Zhang, Hui;Wang, Yilun;et al
  • 通讯作者:
    et al
Nonlinear Optics at Excited States of Exciton Polaritons in Two-Dimensional Atomic Crystals
二维原子晶体中激子极化子激发态的非线性光学
  • DOI:
    10.1021/acs.nanolett.9b04811
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Liu, Xiaoze;Yi, Jun;Li, Quanwei;Yang, Sui;Bao, Wei;Ropp, Chad;Lan, Shoufeng;Wang, Yuan;Zhang, Xiang
  • 通讯作者:
    Zhang, Xiang
Multiferroicity in atomic van der Waals heterostructures
原子范德华异质结构的多铁性
  • DOI:
    10.1038/s41467-019-10693-0
  • 发表时间:
    2019-06-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cheng Gong;Eun Mi Kim;Yuang Wang;Geunsik Lee;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Zhang其他文献

Predicting Individual Cell Division Events from Single-Cell ERK and Akt Dynamics
从单细胞 ERK 和 Akt 动力学预测单个细胞分裂事件
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan D. Stern;Gregory R. Smith;Luis C. Santos;Deepraj Sarmah;Xiang Zhang;Xiaoming Lu;F. Iuricich;G. Pandey;R. Iyengar;M. Birtwistle
  • 通讯作者:
    M. Birtwistle
Intra-axonal overloading of calcium ion in rat diffuse axonal injury and therapeutic effect of calcium antagonist.
大鼠弥漫性轴突损伤中轴突内钙离子超载及钙拮抗剂的治疗作用。
Review of fatigue fracture behaviours of materials made by laser powder bed fusion
激光粉末床熔合材料疲劳断裂行为综述
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Wei;Xiang Zhang;Meng Zhang;Hua Li;Chen;David Hardacre
  • 通讯作者:
    David Hardacre
Cytotoxicity of Boron-Doped Nanocrystalline Diamond Films Prepared by Microwave Plasma Chemical Vapor Deposition
微波等离子体化学气相沉积法制备掺硼纳米晶金刚石薄膜的细胞毒性
  • DOI:
    10.1088/1009-0630/17/7/08
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dan Liu;L. Gou;J. Ran;Hong Zhu;Xiang Zhang
  • 通讯作者:
    Xiang Zhang
Deep Sub-Wavelength Plasmonic Lasers
深亚波长等离子体激光器
  • DOI:
    10.1364/pmeta_plas.2010.mwa2
  • 发表时间:
    2010-06-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bartal;R. Oulton;V. Sorger;T. Zentgraf;Xiang Zhang
  • 通讯作者:
    Xiang Zhang

Xiang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Zhang', 18)}}的其他基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
  • 批准号:
    2245894
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
  • 批准号:
    2114822
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
  • 批准号:
    1725335
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1664629
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1552915
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
  • 批准号:
    1707548
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
  • 批准号:
    1344290
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques
材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料
  • 批准号:
    1210170
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
  • 批准号:
    1162374
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Richter - Advancing Construction Design Efficiency through computational analysis: Revolutionising Working Platforms within construction industry
Richter - 通过计算分析提高建筑设计效率:彻底改变建筑行业的工作平台
  • 批准号:
    10089025
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
AI and Hyperspectral Imaging based Non-Destructive inspection for Advancing Peat Use Efficiency in Whisky Production: A Feasibility Study
基于人工智能和高光谱成像的无损检测提高威士忌生产中泥炭的使用效率:可行性研究
  • 批准号:
    10081207
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Supporting sustainable intensification in the Canadian field crop sector: Advancing life cycle assessment methods and applications to identify priority technologies for resource efficiency and emissions reduction objectives
支持加拿大大田作物行业的可持续集约化:推进生命周期评估方法和应用,以确定资源效率和减排目标的优先技术
  • 批准号:
    RGPIN-2018-04282
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Supporting sustainable intensification in the Canadian field crop sector: Advancing life cycle assessment methods and applications to identify priority technologies for resource efficiency and emissions reduction objectives
支持加拿大大田作物行业的可持续集约化:推进生命周期评估方法和应用,以确定资源效率和减排目标的优先技术
  • 批准号:
    RGPIN-2018-04282
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Supporting sustainable intensification in the Canadian field crop sector: Advancing life cycle assessment methods and applications to identify priority technologies for resource efficiency and emissions reduction objectives
支持加拿大大田作物行业的可持续集约化:推进生命周期评估方法和应用,以确定资源效率和减排目标的优先技术
  • 批准号:
    RGPIN-2018-04282
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了