Interrelated Photo and Electrocatalytic Processes for the Reduction of CO2: Controlling Multiproton/Multielectron Events

用于还原二氧化碳的相关光催化和电催化过程:控制多质子/多电子事件

基本信息

  • 批准号:
    1800400
  • 负责人:
  • 金额:
    $ 48.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

One important approach to remove undesirable CO2 in the atmosphere is to convert it to useful chemicals. This chemistry can be carried out in an electrochemical cell, but there are also recent advances showing that it is possible to do CO2 conversion with light. Thus, one goal is to react CO2 and water with sunlight to generate chemicals that are important both as fuels and as raw materials. Whether this chemistry is carried out electrochemically or photochemically, the reactions require energy. Practical CO2 conversion processes require that the energy input be as small as possible. To that end, catalysts are needed that minimize this energy input while also providing desirable reaction products. Presently, there is only limited understanding of the chemistry needed to build both electrocatalysts and photocatalysts that achieve such efficiency. The Bocarsly research group is advancing the understanding of the fundamental underlying chemistry necessary to develop practical CO2 catalysts. They are using this knowledge to construct new catalysts with improved chemical activity, product selectivity, and energy consumption. This knowledge-based advancement in catalyst design is critical to produce new routes to CO2 utilization that are environmentally responsible and socially beneficial. Dr. Bocarsly is actively engaging in outreach activities related to his research efforts including the education of next generation chemical researchers and K-12 outreach activities carried out under Princeton's Summer Laboratory Learning Program. His activities include a special program to encourage undergraduates in underrepresented groups to consider graduate education in the sciences.Funding from the National Science Foundation makes possible Dr. Bocarsly's studies at Princeton University on catalysts for electrochemical and photochemical CO2 utilization. Electrocatalytic studies focus on the use of metal alloy systems to address both materials science (i.e. electrode composition) and mechanistic question necessary to understand the reduction of aqueous CO2 to organic oxygenates. Presently, an understanding of the detailed mechanisms that allow the coupling of electron and proton transfer in the reduction of CO2 is being sought. Of particular interest is the reduction of CO2 to form carbon-carbon bonds. Three types of studies are underway: 1) The role of meta-stable surface oxides in the reduction of CO2; 2) The photochemical and electrocatalytic reduction of CO2 to CO using manganese carbonyl complexes as homogeneous catalysts; 3) Mixed metal electrodes as PCET catalysts for the formation of multiple carbon products. Understanding unifying chemical themes that underlie all these systems is transformative in terms of fundamental chemistry and the capability it brings in the areas of new fuel resources and environmental protection. Dr. Bocarsly is heavily involved in the education of next generation electrochemical researchers, who are key to an environmentally sensitive alternate energy future. In addition, Dr. Bocarsly carries out activities in the areas of community outreach and K-12 education through Princeton's Materials Program and Princeton's Summer Laboratory Learning Program. Bocarsly's research program also partners with Princeton's Department of Chemistry Outreach to Underrepresented Minors Program, to bring a diverse selection of the national undergraduate population into Princeton research labs for a 10-week summer research experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
去除大气中不良二氧化碳的一种重要方法是将其转换为有用的化学物质。该化学可以在电化学细胞中进行,但最近的进步表明,可以用光进行二氧化碳转化。因此,一个目标是用阳光对二氧化碳和水反应,以产生既重要的燃料又是原材料都很重要的化学物质。无论是在电化学上还是光化学上进行这种化学反应,反应都需要能量。实用的二氧化碳转换过程要求能量输入尽可能小。为此,需要催化剂来最大程度地减少这种能量输入,同时还提供理想的反应产物。目前,对建立实现此类效率的电催化剂和光催化剂所需的化学作用只有有限的理解。 Bocarsly研究小组正在促进对开发实际CO2催化剂所需的基本基本化学的理解。他们使用这些知识来构建具有改善化学活性,产品选择性和能耗的新催化剂。这种基于知识的催化剂设计的进步对于为环境负责且对社会有益的新二氧化碳利用途径至关重要。 Bocarsly博士正在积极从事与他的研究工作有关的外展活动,包括对下一代化学研究人员的教育以及根据普林斯顿的暑期实验室学习计划进行的K-12外展活动。他的活动包括一项特殊计划,以鼓励代表性不足的团体中的大学生考虑科学的研究生教育。国家科学基金会的资金使Bocarsly博士在普林斯顿大学的研究催化剂学院研究了电化学和光化学二氧化碳的利用。电催化研究的重点是使用金属合金系统来解决材料科学(即电极组成)和机械问题,以了解将二氧化碳水还原为有机氧合的必要问题。目前,正在寻求对允许电子和质子转移偶联的详细机制的理解。特别令人感兴趣的是二氧化碳减少以形成碳碳键。正在进行三种研究:1)元稳定的表面氧化物在二氧化碳还原中的作用; 2)使用锰羰基复合物作为均匀催化剂的二氧化碳的光化学和电催化还原; 3)混合金属电极作为用于形成多种碳产品的PCET催化剂。了解所有这些系统的统一化学主题在基本化学及其在新的燃料资源和环境保护领域带来的能力方面具有变革性。 Bocarsly博士大量参与了下一代电化学研究人员的教育,这是环境敏感的替代能源未来的关键。此外,Bocarsly博士通过普林斯顿的材料计划和普林斯顿的暑期实验室学习计划在社区外展和K-12教育领域开展活动。 Bocarsly的研究计划还与普林斯顿的化学系与代表性不足的未成年人计划合作,将各种国家的本科生选择带入普林斯顿研究实验室,以获得为期10周的夏季研究经验。这一奖项反映了NSF的宣传任务,并被认为是值得的值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Bocarsly其他文献

Andrew Bocarsly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Bocarsly', 18)}}的其他基金

Structure and Dynamics in Heterogeneous Reactions
非均相反应中的结构和动力学
  • 批准号:
    1506989
  • 财政年份:
    2015
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
SusChEM: A Mechanistic Approach to Understanding and Lowering the Overpotential for CO2 Reduction to C1 Organic Products
SusChEM:一种理解和降低 CO2 还原为 C1 有机产品的过电势的机械方法
  • 批准号:
    1308652
  • 财政年份:
    2013
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant
Structure and Dynamics of Heterogeneous Reactions
多相反应的结构和动力学
  • 批准号:
    1213216
  • 财政年份:
    2012
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant
A Study of Charge Transfer Processes in the Catalyzed Conversion of Carbon Dioxide to Methanol and Higher Order Alcohols
二氧化碳催化转化为甲醇和高阶醇的电荷转移过程研究
  • 批准号:
    0911114
  • 财政年份:
    2009
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant
Cyanogels: From Nano-Alloys to New Materials
氰凝胶:从纳米合金到新材料
  • 批准号:
    0616475
  • 财政年份:
    2006
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant
Dynamics of Heterogeneous Reactions
非均相反应动力学
  • 批准号:
    0313801
  • 财政年份:
    2003
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
Dynamics of Heterogeneous Reactions
非均相反应动力学
  • 批准号:
    9986950
  • 财政年份:
    2000
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
Cyanogels: A Coordination Polymer Based System for the Synthesis of Solid-State Materials Via Sol-Gel Processing
氰凝胶:一种基于配位聚合物的系统,用于通过溶胶-凝胶加工合成固态材料
  • 批准号:
    0079169
  • 财政年份:
    2000
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant
Dynamics of Heterogeneous Reactions
非均相反应动力学
  • 批准号:
    9619190
  • 财政年份:
    1997
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
U.S.-India Cooperative Research: Studies of Cynometalate Modified Electrodes-Electrocatalysis and Sensor Development,Award in Indian and U.S. Currency
美印合作研究:氰金属盐修饰电极-电催化和传感器开发研究,获印度和美国货币奖
  • 批准号:
    9604863
  • 财政年份:
    1997
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Standard Grant

相似国自然基金

基于迁移学习的跨场景红外监测照片自动识别方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
与黑洞光环偏振照片相关的弯曲时空同步辐射的研究
  • 批准号:
    12205013
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
顾及非线性响应的智能手机照片离水反射率校正与水质监测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
脆化卷曲文物照片塑化展平与抗回缩修复新方法及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于地理标记照片的中国入境旅游流时空演进模式及驱动模型研究
  • 批准号:
    42171460
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Discovery Early Career Researcher Award
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
  • 批准号:
    EP/Y037383/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Fellowship
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Continuing Grant
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
  • 批准号:
    EP/Z53299X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了