Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
基本信息
- 批准号:1800161
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The sphere, a flat surface such as a flat piece of paper, and a hyperbolic surface such as a saddle behave differently from each other. On the surface of the ball curves of least length (geodesics) emanating from a point in different directions tend to not move away from each other in the short term, or at least less rapidly than in the flat surface, whereas in the saddle surface the geodesics curve away from each other rapidly. This behavior is related to the curvature of the surface, with the sphere of positive curvature, the flat surface of zero curvature, and the saddle of negative curvature. Analogs of this behavior hold in higher dimensional objects that occur in nature. Curvature plays a key role in how natural phenomena such as dissipation of heat and electricity behave, and this is true also in objects that are not as smooth as the three types described above. Such non-smooth objects occur in nature and have creases, bumps and fractal-like structure, and so the classical theory of curvature does not apply to them. The focus of this project is to use the analog of curvature developed for the non-smooth setting recently, and explore how that dictates the behavior of natural phenomena such as heat dissipation in such objects.The goal of this project is to explore links between the notions of negative curvature of a metric space on the one hand, and nonlinear potential theory and quasiconformal mappings on the other hand. The spaces considered are equipped with a uniformly locally doubling measure supporting a uniformly local Poincare inequality. A prototype space equipped with a uniformly locally doubling measure supporting a uniformly local Poincare inequality but does not support their global analogs is the smooth hyperbolic manifold, and experience tells us that such spaces have exponential volume growth at large scales. This project is divided into three parts. In the first part of the project, the focus is the large scale negative curvature of the space (as given in optimal mass transportation) and its connections to large-scale potential theory (non-linear ``heat" energy dissipation) and hyperbolicity of ends. In the second part the aim is to construct geometric families of curves connecting pairs of points in the space when the space has lower bounded Ricci curvature in the sense of Lott and Villani. The third part of the project is to consider bounded doubling nonsmooth spaces as boundaries of Gromov-hyperbolic filling and use this perspective to study non-local potential theory and regularity of nonlocal energy minimizers on poorly pathconnected spaces. The research described herein forms a part of the program of quasiconformal classification of nonsmooth spaces. Such spaces arise in the study of smooth manifolds when considering Gromov-Hausdorff limit spaces as in the works of Cheeger, Gromov, and Perelman.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carathéodory-Type Extension Theorem with Respect to Prime End Boundaries
关于素端边界的卡拉西奥多里型可拓定理
- DOI:10.1007/s12220-020-00464-5
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kline, Joshua;Lindquist, Jeff;Shanmugalingam, Nageswari
- 通讯作者:Shanmugalingam, Nageswari
Extension and trace results for doubling metric measure spaces and their hyperbolic fillings
- DOI:10.1016/j.matpur.2021.12.003
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Anders Bjorn;Jana Bjorn;N. Shanmugalingam
- 通讯作者:Anders Bjorn;Jana Bjorn;N. Shanmugalingam
Modulus of families of sets of finte perimeter and quasiconformal maps between metric spaces of globally Q-bounded geometry
全局 Q 有界几何的度量空间之间的有限周长组和拟共形映射的族模
- DOI:10.1512/iumj.2020.69.8212
- 发表时间:2020
- 期刊:
- 影响因子:1.1
- 作者:Jones, Rebekah;Lahti, Panu;Shanmugalingam, Nageswari
- 通讯作者:Shanmugalingam, Nageswari
Notions of Dirichlet problem for functions of least gradient in metric measure spaces
度量测度空间中最小梯度函数的狄利克雷问题的概念
- DOI:10.4171/rmi/1095
- 发表时间:2019
- 期刊:
- 影响因子:1.2
- 作者:Korte Riikka;Lahti Panu;Li Xining;Shanmugalingam Nageswari
- 通讯作者:Shanmugalingam Nageswari
The prime end capacity of inaccessible prime ends, resolutivity, and the Kellogg property
不可接近素端的素端容量、分辨率和凯洛格性质
- DOI:10.1007/s00209-019-02268-y
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Adamowicz, Tomasz;Shanmugalingam, Nageswari
- 通讯作者:Shanmugalingam, Nageswari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nageswari Shanmugalingam其他文献
Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto - 通讯作者:
Masahiro Morimoto
Haj?asz gradients are upper gradients
Hajï¼asz 梯度是上梯度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1.3
- 作者:
Renjin Jiang;Nageswari Shanmugalingam;Dachun Yang;Wen Yuan - 通讯作者:
Wen Yuan
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
- DOI:
10.1016/j.jde.2020.10.018 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan - 通讯作者:
Zhou Xiaodan
Nageswari Shanmugalingam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
- 批准号:
2054960 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Potential Theory of Functions of Bounded Variation and Quasiconformal Maps
有界变分函数和拟共形映射的势理论
- 批准号:
1500440 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Metric geometry and functions of bounded variation
度量几何和有界变分函数
- 批准号:
1200915 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
- 批准号:
1019689 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
- 批准号:
0355027 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0243355 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0100132 - 财政年份:2001
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
具正平均曲率的厄密特度量的存在性及相关问题的研究
- 批准号:12371062
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
利用体外三维微结构研究曲率梯度对肿瘤细胞动力学的调控
- 批准号:12304253
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
曲率有下界的流形的几何与拓扑
- 批准号:12371049
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
大跨空间结构隔震-减振联合控制机理及曲率一致型减隔震支座应用研究
- 批准号:52378501
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等法曲率网格的弹性主动变形结构变形机制与优化方法研究
- 批准号:52308208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Research of submanifolds in symmetric spaces and their time evolution along various curvature flows
对称空间子流形及其沿不同曲率流的时间演化研究
- 批准号:
18K03311 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
- 批准号:
EP/M024512/1 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Research on spaces of non-positive curvature, their isometry groups and Coxeter groups
非正曲率空间及其等距群和Coxeter群的研究
- 批准号:
25800039 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Group actions on symplectic manifolds and their quantization
辛流形上的群作用及其量子化
- 批准号:
23540072 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)