Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory

通过局部和非局部势理论探索大尺度几何

基本信息

项目摘要

This project will develop new mathematical tools for the analysis of metric measure spaces – that is, spaces equipped (like Euclidean space) with notions of distance and volume – with a focus on metric measure spaces that (unlike Euclidean space) lack smooth structure. The analysis of non-smooth spaces is a vital area of research with diverse applications across the mathematical and physical sciences, including fluid mechanics, neurophysiology, and fractal geometry. The PI will investigate the large-scale geometric behavior of objects in these spaces using the mathematical tools of local and nonlocal energies. Given a function measuring a physical phenomenon, such as temperature or momentum, local energies measure the function’s nearby or small-scale oscillations, while nonlocal energies measure its variations over long distances. A primary goal of this work is to develop much-needed mathematical tools for analyzing nonlocal energies. The project will also enhance the professional training of graduate students and postdoctoral scholars, through collaborative research projects, instruction in effective mathematical communication, and opportunities for research interactions with undergraduate students. The primary objects of study in this project are represented as metric measure spaces that lack smooth structure. The finite dimensionality of the ambient space is represented by the property of supporting a doubling Radon measure. In such a setting, nearby or asymptotic oscillation of a function is measured using upper gradients, which are viable substitutes for the derivative of a function, and the local energy is associated with the collection of functions on the object, called Sobolev functions. The large-scale variation energy is associated with the collection called Besov space of functions. Recent research has uncovered a connection between local energies on a region in a metric measure space and nonlocal energies on the boundary of the region. The project will leverage this connection to explore the large-scale geometry of nonlocal energies on the boundary of the region by linking them with small-scale behavior of local energies on the region itself. In particular, connections between Dirichlet-type boundary value problems and Neumann-type boundary value problems will be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发用于分析措施空间的新数学工具,即装备的距离(例如欧几里得空间)的距离和体积 - 重点是(与欧几里得空间不同)缺乏平滑结构的环形空间。平滑空间是一个重要的研究领域,在数学和物理科学机能,神经生理学和分形几何形状中,PI将使用局部和非局部能量的数学工具在这些空间中研究这些空间小规模的振荡,而非局部能量在长距离上进行了变化。地下学生。称为Sobolev的功能。通过在调节本身上与局部能量的小规模联系,在该地区边界上的非局部能量的大规模几何形状。使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nageswari Shanmugalingam其他文献

Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto
  • 通讯作者:
    Masahiro Morimoto
Haj?asz gradients are upper gradients
Hajï¼asz 梯度是上梯度
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
  • DOI:
    10.1016/j.jde.2020.10.018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan
  • 通讯作者:
    Zhou Xiaodan

Nageswari Shanmugalingam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金

The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant
Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
  • 批准号:
    1800161
  • 财政年份:
    2018
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant
Potential Theory of Functions of Bounded Variation and Quasiconformal Maps
有界变分函数和拟共形映射的势理论
  • 批准号:
    1500440
  • 财政年份:
    2015
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Continuing Grant
Metric geometry and functions of bounded variation
度量几何和有界变分函数
  • 批准号:
    1200915
  • 财政年份:
    2012
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
  • 批准号:
    1019689
  • 财政年份:
    2010
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant
Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
  • 批准号:
    0355027
  • 财政年份:
    2004
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0243355
  • 财政年份:
    2002
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0100132
  • 财政年份:
    2001
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant

相似国自然基金

面向大规模盲源分离的高维度大尺寸张量分解方法研究
  • 批准号:
    62071082
  • 批准年份:
    2020
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向科学大装置超大规模数据流的定制计算研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
    联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
  • 批准号:
    31771484
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于热点导航的大图数据迭代计算过程可视化关键技术研究
  • 批准号:
    61602103
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Large-Scale Theoretical Capabilities for Exploring the Limits of Nuclear Stability
职业:探索核稳定性极限的大规模理论能力
  • 批准号:
    2238752
  • 财政年份:
    2023
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Standard Grant
Exploring Polyhedra Representing Large-Scale Data Sets
探索表示大规模数据集的多面体
  • 批准号:
    RGPIN-2019-07134
  • 财政年份:
    2022
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring Polyhedra Representing Large-Scale Data Sets
探索表示大规模数据集的多面体
  • 批准号:
    RGPIN-2019-07134
  • 财政年份:
    2021
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring Graph-based Techniques for Detecting Large Scale Security Attacks
探索基于图的技术来检测大规模安全攻击
  • 批准号:
    565634-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Exploring novel observational probes of large-scale galaxy surveys that uncover the clues beyond the standard cosmological model
探索大规模星系调查的新颖观测探测器,揭示标准宇宙学模型之外的线索
  • 批准号:
    21H01081
  • 财政年份:
    2021
  • 资助金额:
    $ 34.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了