SCC-Planning: Using Innovations in Big Data and Technology to Address the High Rate of Infant Mortality in Greater Columbus Ohio
SCC-Planning:利用大数据和技术创新解决俄亥俄州大哥伦布市婴儿死亡率高的问题
基本信息
- 批准号:1737560
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Franklin County, Ohio, home of the state's capital at Columbus, has one of the highest infant mortality rates in the country at 8.3 deaths per 1,000 live births. As outlined in a recent article in the Journal of the American Medical Association (2016), the U.S. lags behind in many important measures of population health, including infant mortality, despite the fact that one-fifth of our dollars are spent on healthcare. While the data needed to address these important public health problems are available, to date we have not seen adequate investment in informatics approaches to combine and analyze these multilevel (e.g., individual lifestyle factors, neighborhood characteristics) data. The current planning project represents an effort to plan (with an intent to implement) just such an approach to address the high rate of infant mortality in Greater Columbus and nationwide. As the recent winner of the Department of Transportation's Smart Cities Challenge, Columbus already has a well-developed plan to employ technology to improve local transportation options, which is anticipated to ameliorate some contributing factors such as lack of access prenatal and other health care. The financial support from this and follow-up grants will permit us to expand that effort and leverage technological advances to further identify and design interventions to address risk factors for poor maternal and infant health outcomes. Further, by including students and other trainees in our work, we will be training the next generation of scientists to develop innovative solutions to address complex societal problems. The objectives of this one-year planning project are to: 1) identify data gaps that present local barriers to achieving optimal maternal and infant health and their effect on proximate causes of infant mortality in the community; 2) align with key stakeholders and partners in the community with a goal to identify opportunities where technology, especially connectivity and mobility, could be leveraged to address barriers and speed-up progress; and 3) utilize our technological and content expertise to design and implement novel interventions for improving maternal and infant health. Since 2014 there have been a number of local efforts to address Franklin County's high rate of infant mortality to no avail. As such, there is a dire need for a coordinated novel multidisciplinary approach. The primary focus and intellectual contribution of this planning grant is to work closely with stakeholders to plan strategies to identify the key contributors of infant mortality in Franklin County (i.e., likely specific social determinants of health) and to develop novel interventions driven by innovations in BIGDATA technology.
俄亥俄州富兰克林县是该州首府哥伦布市的所在地,该县是全国婴儿死亡率最高的县之一,每 1,000 名活产婴儿中有 8.3 人死亡。 正如《美国医学会杂志》(2016 年)最近发表的一篇文章所述,尽管美国有五分之一的资金用于医疗保健,但美国在许多重要的人口健康指标(包括婴儿死亡率)方面仍然落后。 虽然解决这些重要公共卫生问题所需的数据是可用的,但迄今为止,我们还没有看到对信息学方法的足够投资来组合和分析这些多层次(例如,个人生活方式因素、社区特征)数据。当前的规划项目代表着努力规划(并打算实施)这样一种方法,以解决大哥伦布市和全国范围内的高婴儿死亡率问题。 作为最近交通部智慧城市挑战赛的获胜者,哥伦布已经制定了一项完善的计划,利用技术来改善当地的交通选择,预计这将改善一些影响因素,例如缺乏产前和其他医疗保健服务。 这笔资金和后续赠款的财政支持将使我们能够扩大这一努力,并利用技术进步来进一步确定和设计干预措施,以解决孕产妇和婴儿健康状况不佳的风险因素。此外,通过让学生和其他学员参与我们的工作,我们将培训下一代科学家,开发创新的解决方案来解决复杂的社会问题。 这一为期一年的规划项目的目标是: 1) 查明当地实现最佳孕产妇和婴儿健康障碍的数据差距及其对社区婴儿死亡直接原因的影响; 2) 与社区中的主要利益相关者和合作伙伴保持一致,目标是发现可以利用技术(尤其是连通性和移动性)来解决障碍并加快进展的机会; 3) 利用我们的技术和内容专业知识来设计和实施新颖的干预措施,以改善孕产妇和婴儿健康。自 2014 年以来,当地为解决富兰克林县高婴儿死亡率问题做出了一系列努力,但均无济于事。因此,迫切需要一种协调一致的新颖的多学科方法。该规划拨款的主要重点和智力贡献是与利益相关者密切合作,制定战略,以确定富兰克林县婴儿死亡率的关键因素(即可能的特定健康社会决定因素),并制定由大数据创新驱动的新颖干预措施技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raghu Machiraju其他文献
Raghu Machiraju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raghu Machiraju', 18)}}的其他基金
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
- 批准号:
1940168 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761969 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
- 批准号:
1262469 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
- 批准号:
1065025 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ITR/NGS: A Framework for Discovery, Exploration and Analysis of Evolutionary Simulation Data (DEAS)
ITR/NGS:进化模拟数据发现、探索和分析的框架 (DEAS)
- 批准号:
0326386 - 财政年份:2003
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
SOFTWARE: Framework for Mining Large and Complex Scientific Datasets
软件:挖掘大型复杂科学数据集的框架
- 批准号:
0234273 - 财政年份:2003
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
0196242 - 财政年份:2000
- 资助金额:
$ 10万 - 项目类别:
Continuing grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
9734483 - 财政年份:1998
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
多源数据环境下基于土地使用的城市道路设施供需耦合机理与规划应对
- 批准号:52172317
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
土地使用制度变迁下的城市空间成长特征与适应性的规划调控策略研究
- 批准号:52008181
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于社交媒体数据的公园使用强度和满意程度研究——以上海为例
- 批准号:51908290
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于机器学习的管型航路柔性化方法研究
- 批准号:U1933119
- 批准年份:2019
- 资助金额:30.0 万元
- 项目类别:联合基金项目
历史文化村镇保护规划实施后动态评价体系研究
- 批准号:51508197
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Planning: Using Emerging Technologies for Increasing Student Enrollment and Learning in Infrastructure and Building Construction Technology at HBCUs
规划:利用新兴技术提高 HBCU 基础设施和建筑施工技术的学生入学率和学习率
- 批准号:
2332003 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Optimising Air Transport Route & Demand Planning Using AI Powered Data Analysis
优化航空运输路线
- 批准号:
10079293 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Discovery Pipeline for Genetic Defects in Hypothalamic-pituitary Development Using International Mouse Phenotyping Consortium Mice
利用国际小鼠表型联盟小鼠发现下丘脑-垂体发育遗传缺陷的管道
- 批准号:
10656660 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: