G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
基本信息
- 批准号:1065025
- 负责人:
- 金额:$ 54.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Machiraju, Rangarajan, and ThompsonAs computer power continues to increase, the complexity of simulations also increases thereby producing datasets of unprecedented size. Without effective analysis tools, results from these large-scale simulations cannot be utilized to their fullest extent. This research addresses the problem of large-data visualization and exploration by employing interactive multi-scale machine learning, which exploits an efficient feature-based, multi-resolution representation of the data. The investigators are leveraging methods from the field of machine learning to perform two distinct tasks: identify regions of interest and enhance robustness of feature detection algorithms. The primary outcome of this effort is the realization of a framework for exploring large datasets. Further, this work is introducing a large body of work in machine learning to the field of visualization. Successful completion of this research will help overcome the brittleness of existing visualization methods and foster expedient discovery in many areas of science and engineering.The multi-resolution techniques developed here will employ a two-fold strategy. First, semi-supervised learning based on training with the domain expert is used to develop strategies for selective spatial and temporal refinement of the data. A classifier is constructed to tag the output of the coarse resolution feature detection (i.e. regions) as either interesting or not interesting. Then at the finest scale, interesting local data chunks containing features of interest are identified for further analysis. Second, several local feature detection algorithms, or weak classifiers, are combined into a single, more robust compound classifier using adaptive boosting, or AdaBoost, and a data adaptive variant called CAVIAR that facilitates validated feature detection. Ideally, the compound classifier combines the best of all weak classifiers as they respond to the underlying physical signal. This research is demonstrating the effectiveness of these methods by applying existing local detection algorithms for visualizing vortices in turbulent flow fields.
摘要 - Machiraju、Rangarajan 和 Thompson 随着计算机能力的不断增强,模拟的复杂性也随之增加,从而产生了前所未有的规模的数据集。 如果没有有效的分析工具,这些大规模模拟的结果就无法得到充分利用。这项研究通过采用交互式多尺度机器学习来解决大数据可视化和探索问题,该学习利用了基于特征的高效数据多分辨率表示。研究人员正在利用机器学习领域的方法来执行两项不同的任务:识别感兴趣的区域并增强特征检测算法的鲁棒性。这项工作的主要成果是实现了探索大型数据集的框架。此外,这项工作将机器学习的大量工作引入可视化领域。这项研究的成功完成将有助于克服现有可视化方法的脆弱性,并促进科学和工程许多领域的便利发现。这里开发的多分辨率技术将采用双重策略。首先,基于领域专家训练的半监督学习用于开发选择性空间和时间细化数据的策略。 构建分类器以将粗分辨率特征检测的输出(即区域)标记为感兴趣或不感兴趣。然后,以最精细的规模,识别包含感兴趣特征的有趣本地数据块以进行进一步分析。其次,使用自适应增强 (AdaBoost) 和名为 CAVIAR 的数据自适应变体(有助于验证特征检测)将多个局部特征检测算法(或弱分类器)组合成一个更鲁棒的复合分类器。理想情况下,复合分类器结合了所有弱分类器中最好的,因为它们响应潜在的物理信号。这项研究通过应用现有的局部检测算法来可视化湍流场中的涡流,证明了这些方法的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raghu Machiraju其他文献
Raghu Machiraju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raghu Machiraju', 18)}}的其他基金
Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
- 批准号:
1940168 - 财政年份:2019
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761969 - 财政年份:2018
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
SCC-Planning: Using Innovations in Big Data and Technology to Address the High Rate of Infant Mortality in Greater Columbus Ohio
SCC-Planning:利用大数据和技术创新解决俄亥俄州大哥伦布市婴儿死亡率高的问题
- 批准号:
1737560 - 财政年份:2017
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
- 批准号:
1262469 - 财政年份:2014
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
ITR/NGS: A Framework for Discovery, Exploration and Analysis of Evolutionary Simulation Data (DEAS)
ITR/NGS:进化模拟数据发现、探索和分析的框架 (DEAS)
- 批准号:
0326386 - 财政年份:2003
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
SOFTWARE: Framework for Mining Large and Complex Scientific Datasets
软件:挖掘大型复杂科学数据集的框架
- 批准号:
0234273 - 财政年份:2003
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
0196242 - 财政年份:2000
- 资助金额:
$ 54.2万 - 项目类别:
Continuing grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
9734483 - 财政年份:1998
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
G&V: Medium: Collaborative Research: A Unified Approach to Material Appearance Modeling
G
- 批准号:
1064410 - 财政年份:2011
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
G&V: Medium: Collaborative Research: Contact-Based Human Motion Acquisition and Synthesis
G
- 批准号:
1065384 - 财政年份:2011
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
G&V: Medium: Collaborative Research: A Unified Approach to Material Appearance Modeling
G
- 批准号:
1064427 - 财政年份:2011
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant
G&V: Medium: Collaborative Research: Contact-Based Human Motion Acquisition and Synthesis
G
- 批准号:
1064983 - 财政年份:2011
- 资助金额:
$ 54.2万 - 项目类别:
Standard Grant
G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
- 批准号:
1065107 - 财政年份:2011
- 资助金额:
$ 54.2万 - 项目类别:
Continuing Grant